// Numbas version: finer_feedback_settings {"name": "Apply the cosine rule (3 sides given, degrees)", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Triangle_700_JKWvhba.gif", "/srv/numbas/media/question-resources/Triangle_700_JKWvhba.gif"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Apply the cosine rule (3 sides given, degrees)", "tags": [], "metadata": {"description": "
A question testing the application of the Cosine Rule when given three side lengths. In this question, the triangle is always acute. A secondary application is finding the area of a triangle.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Suppose that $\\Delta ABC$ is a triangle with all interior angles less than $90^{\\circ}$. Sides and angles are labelled as shown in the diagram below (not to scale).
\nGiven the following three side lengths, determine the three angles using the Cosine Rule. Give your answers correct to the nearest degree.
\n\n", "advice": "Use the Cosine Rule to find $\\cos A$: $\\cos A =\\dfrac{b^2+c^2-a^2}{2bc}$. Therefore
\n\\[\\cos A =\\dfrac{\\var{b0}^2+\\var{c0}^2-\\var{a0}^2}{2 \\times \\var{b0} \\times \\var{c0}}=\\dfrac{\\var{b0^2+c0^2-a0^2}}{\\var{2 *b0*c0}}\\]
\n\\[=\\var{(b0^2+c0^2-a0^2)/(2 *b0*c0)}\\]
\nand so $A=\\cos^{-1}(\\var{(b0^2+c0^2-a0^2)/(2 *b0*c0)})=\\var{aa0}$.
\n\nSimilarly $\\cos B =\\dfrac{a^2+c^2-b^2}{2ac}$ and $\\cos C =\\dfrac{a^2+b^2-c^2}{2ab}$. So
\n\\[\\cos B =\\dfrac{\\var{a0}^2+\\var{c0}^2-\\var{b0}^2}{2 \\times \\var{a0} \\times \\var{c0}}=\\var{(a0^2+c0^2-b0^2)/(2 *a0*c0)}\\]
\nand so $B=\\cos^{-1}(\\var{(a0^2+c0^2-b0^2)/(2 *a0*c0)})=\\var{bb0}$.
\n\\[\\cos C =\\dfrac{\\var{a0}^2+\\var{b0}^2-\\var{c0}^2}{2 \\times \\var{a0} \\times \\var{b0}}=\\var{(a0^2+b0^2-c0^2)/(2 *a0*b0)}\\]
\nand so $C=\\cos^{-1}(\\var{(a0^2+b0^2-c0^2)/(2 *a0*b0)})=\\var{cc0}$.
\n", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "extensions": [], "variables": {"cc4": {"name": "cc4", "group": "Ungrouped variables", "definition": "pi-AA3-BB3", "description": "", "templateType": "anything"}, "cc1": {"name": "cc1", "group": "Ungrouped variables", "definition": "pi-aa0-bb0", "description": "", "templateType": "anything"}, "b3": {"name": "b3", "group": "Ungrouped variables", "definition": "random(7..20)", "description": "", "templateType": "anything"}, "s5": {"name": "s5", "group": "Ungrouped variables", "definition": "sin(AA5)", "description": "", "templateType": "anything"}, "c31": {"name": "c31", "group": "Ungrouped variables", "definition": "ceil(sqrt(x4))", "description": "", "templateType": "anything"}, "area": {"name": "area", "group": "Ungrouped variables", "definition": "precround(b0*c0*s0/2,3)", "description": "", "templateType": "anything"}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "floor(sqrt(x2))", "description": "", "templateType": "anything"}, "check2": {"name": "check2", "group": "Ungrouped variables", "definition": "pi-AA3-BB3-CC3", "description": "", "templateType": "anything"}, "t3": {"name": "t3", "group": "Ungrouped variables", "definition": "sin(BB3)", "description": "", "templateType": "anything"}, "aa2": {"name": "aa2", "group": "Ungrouped variables", "definition": "precround(aa1,3)", "description": "", "templateType": "anything"}, "c3": {"name": "c3", "group": "Ungrouped variables", "definition": "random(c4..c5 except 0)", "description": "", "templateType": "anything"}, "r3": {"name": "r3", "group": "Ungrouped variables", "definition": "(a3^2+b3^2-c3^2)/(2*a3*b3)", "description": "", "templateType": "anything"}, "x4": {"name": "x4", "group": "Ungrouped variables", "definition": "abs(a3^2-b3^2)", "description": "", "templateType": "anything"}, "aa0": {"name": "aa0", "group": "Ungrouped variables", "definition": "precround(arccos(p0)*180/pi,0)", "description": "", "templateType": "anything"}, "bb1": {"name": "bb1", "group": "Ungrouped variables", "definition": "pi-aa0-cc0", "description": "", "templateType": "anything"}, "aa1": {"name": "aa1", "group": "Ungrouped variables", "definition": "pi-bb0-cc0", "description": "", "templateType": "anything"}, "x5": {"name": "x5", "group": "Ungrouped variables", "definition": "a3^2+b3^2", "description": "", "templateType": "anything"}, "aa4": {"name": "aa4", "group": "Ungrouped variables", "definition": "pi-BB3-CC3", "description": "", "templateType": "anything"}, "cc0": {"name": "cc0", "group": "Ungrouped variables", "definition": "precround(arccos(r0)*180/pi,0)", "description": "", "templateType": "anything"}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "max(c01,c02)", "description": "", "templateType": "anything"}, "bb5": {"name": "bb5", "group": "Ungrouped variables", "definition": "precround(BB4,3)", "description": "", "templateType": "anything"}, "bb2": {"name": "bb2", "group": "Ungrouped variables", "definition": "precround(bb1,3)", "description": "", "templateType": "anything"}, "p0": {"name": "p0", "group": "Ungrouped variables", "definition": "(c0^2+b0^2-a0^2)/(2*c0*b0)", "description": "", "templateType": "anything"}, "bb4": {"name": "bb4", "group": "Ungrouped variables", "definition": "pi-AA3-CC3", "description": "", "templateType": "anything"}, "check1": {"name": "check1", "group": "Ungrouped variables", "definition": "pi-AA0-BB0-CC0", "description": "", "templateType": "anything"}, "r0": {"name": "r0", "group": "Ungrouped variables", "definition": "(a0^2+b0^2-c0^2)/(2*a0*b0)", "description": "", "templateType": "anything"}, "aa3": {"name": "aa3", "group": "Ungrouped variables", "definition": "precround(arccos(p3),4)", "description": "", "templateType": "anything"}, "temp1": {"name": "temp1", "group": "Ungrouped variables", "definition": "a0*t0/s0", "description": "", "templateType": "anything"}, "c01": {"name": "c01", "group": "Ungrouped variables", "definition": "ceil(sqrt(x1))", "description": "", "templateType": "anything"}, "u2": {"name": "u2", "group": "Ungrouped variables", "definition": "sin(cc2)", "description": "", "templateType": "anything"}, "cc3": {"name": "cc3", "group": "Ungrouped variables", "definition": "precround(arccos(r3),4)", "description": "", "templateType": "anything"}, "c4": {"name": "c4", "group": "Ungrouped variables", "definition": "max(c31,c32)", "description": "", "templateType": "anything"}, "bb3": {"name": "bb3", "group": "Ungrouped variables", "definition": "precround(arccos(q3),4)", "description": "", "templateType": "anything"}, "p3": {"name": "p3", "group": "Ungrouped variables", "definition": "(c3^2+b3^2-a3^2)/(2*c3*b3)", "description": "", "templateType": "anything"}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "sin(aa2)", "description": "", "templateType": "anything"}, "u5": {"name": "u5", "group": "Ungrouped variables", "definition": "sin(CC5)", "description": "", "templateType": "anything"}, "c02": {"name": "c02", "group": "Ungrouped variables", "definition": "ceil(min(a0,b0)*0.05)", "description": "", "templateType": "anything"}, "q0": {"name": "q0", "group": "Ungrouped variables", "definition": "(a0^2+c0^2-b0^2)/(2*a0*c0)", "description": "", "templateType": "anything"}, "u3": {"name": "u3", "group": "Ungrouped variables", "definition": "sin(CC3)", "description": "", "templateType": "anything"}, "cc5": {"name": "cc5", "group": "Ungrouped variables", "definition": "precround(CC4,3)", "description": "", "templateType": "anything"}, "bb0": {"name": "bb0", "group": "Ungrouped variables", "definition": "precround(arccos(q0)*180/pi,0)", "description": "", "templateType": "anything"}, "c0": {"name": "c0", "group": "Ungrouped variables", "definition": "random(c1..c2 except 0)", "description": "", "templateType": "anything"}, "t5": {"name": "t5", "group": "Ungrouped variables", "definition": "sin(BB5)", "description": "", "templateType": "anything"}, "a0": {"name": "a0", "group": "Ungrouped variables", "definition": "random(10..25)", "description": "", "templateType": "anything"}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "a0^2+b0^2", "description": "", "templateType": "anything"}, "s0": {"name": "s0", "group": "Ungrouped variables", "definition": "sin(aa0)", "description": "", "templateType": "anything"}, "cc2": {"name": "cc2", "group": "Ungrouped variables", "definition": "precround(cc1,3)", "description": "", "templateType": "anything"}, "c5": {"name": "c5", "group": "Ungrouped variables", "definition": "floor(sqrt(x5))", "description": "", "templateType": "anything"}, "b0": {"name": "b0", "group": "Ungrouped variables", "definition": "random(10..25)", "description": "", "templateType": "anything"}, "t2": {"name": "t2", "group": "Ungrouped variables", "definition": "sin(bb2)", "description": "", "templateType": "anything"}, "t0": {"name": "t0", "group": "Ungrouped variables", "definition": "sin(bb0)", "description": "", "templateType": "anything"}, "q3": {"name": "q3", "group": "Ungrouped variables", "definition": "(a3^2+c3^2-b3^2)/(2*a3*c3)", "description": "", "templateType": "anything"}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "abs(a0^2-b0^2)", "description": "", "templateType": "anything"}, "u0": {"name": "u0", "group": "Ungrouped variables", "definition": "sin(cc0)", "description": "", "templateType": "anything"}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "random(7..20)", "description": "", "templateType": "anything"}, "s3": {"name": "s3", "group": "Ungrouped variables", "definition": "sin(AA3)", "description": "", "templateType": "anything"}, "aa5": {"name": "aa5", "group": "Ungrouped variables", "definition": "precround(AA4,3)", "description": "", "templateType": "anything"}, "c32": {"name": "c32", "group": "Ungrouped variables", "definition": "ceil(min(a3,b3)*0.05)", "description": "", "templateType": "anything"}, "temp2": {"name": "temp2", "group": "Ungrouped variables", "definition": "b0-temp1", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["c4", "s3", "cc0", "temp2", "temp1", "b0", "cc3", "b3", "u2", "q0", "q3", "c0", "area", "cc5", "s2", "s0", "cc1", "u0", "u3", "cc2", "aa5", "aa4", "aa1", "aa0", "aa3", "aa2", "x2", "c31", "c32", "a0", "a3", "bb0", "s5", "c3", "c2", "c1", "x1", "c02", "x4", "x5", "p3", "p0", "r0", "r3", "bb3", "t5", "t2", "t3", "t0", "u5", "c5", "cc4", "c01", "bb5", "bb4", "check2", "bb2", "bb1", "check1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "$a=\\var{a0}$, $b=\\var{b0}$, $c=\\var{c0}$
\nAngle $A=$ [[0]]
\nAngle $B=$ [[1]]
\nAngle $C=$ [[2]]
", "stepsPenalty": 1, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "Use the Cosine Rule to find $\\cos A$: $\\cos A =\\dfrac{b^2+c^2-a^2}{2bc}$. Then use $\\cos^{-1}$ to find $A$. Apply similar rules to find $B$ and $C$.
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 2, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "{aa0}", "maxValue": "{aa0}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "0", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 2, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "{bb0}", "maxValue": "{bb0}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "0", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 2, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "minValue": "{cc0}", "maxValue": "{cc0}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": "0", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Andrew Chuter", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4565/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Andrew Chuter", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4565/"}]}