// Numbas version: finer_feedback_settings {"name": "Moment of Inertia: Basic Shapes from the MOI Table", "extensions": ["geogebra", "quantities"], "custom_part_types": [{"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "

A value with units marked right if within an adjustable % error of the correct value.  Marked close if within a wider margin of error.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "

Modify the unit portion of the student's answer by

\n

1. replacing \"ohms\" with \"ohm\"  case insensitive

\n

2. replacing '-' with ' ' 

\n

3. replacing '°' with ' deg' 

\n

to allow answers like 10 ft-lb and 30°

", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "

This fixes the student answer for two common errors.  

\n

If student_units are wrong  - replace with correct units

\n

If student_scalar has the wrong sign - replace with right sign

\n

If student makes both errors, only one gets fixed.

", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "

Only marked close if the student actually has the right sign.

", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.  if correct answer is 100 N and close is ±1%,
99  N is accepted.", "input_type": "percent", "default_value": "75"}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.
If the correct answer is 100 N, both 100 and -100 N are accepted.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value but forgotten units.
This value would be close if the expected units were provided.  If the correct answer is 100 N, and close is ±1%,
99 is accepted.", "input_type": "percent", "default_value": "25"}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": [["question-resources/moi.png", "/srv/numbas/media/question-resources/moi.png"], ["question-resources/PastedGraphic-1.png", "/srv/numbas/media/question-resources/PastedGraphic-1.png"], ["question-resources/basicShapes.ggb", "/srv/numbas/media/question-resources/basicShapes.ggb"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Moment of Inertia: Basic Shapes from the MOI Table", "tags": ["area moment of inertia", "Area moment of inertia", "Mechanics", "mechanics", "Statics", "statics", "table of properties"], "metadata": {"description": "

Use a table of properties to find the Area Moment of inertia for simple shapes: rectangle, triangle, circle, semicircle, and quarter circle.

\n

 The parallel axis theorem is not required for any of these shapes.  One situation requires subtracting a triangle from a rectangle however.

\n

Distinguish between centroidal and non-centroidal moments of inertia.

", "licence": "Creative Commons Attribution-ShareAlike 4.0 International"}, "statement": "

{geogebra_applet('ndkfbkp9',['b': b, 'h': h, 'i': index, 'Z': Z])}

\n

 A {shape} ({dimensions}) and its centroid are shown.

", "advice": "

\n

Use the information in the table below.

\n

", "rulesets": {}, "extensions": ["geogebra", "quantities"], "variables": {"b": {"name": "b", "group": "inputs", "definition": "random(-8..8 except 0)", "description": "

horizontal dimension of rectangles and triangles

", "templateType": "anything"}, "h": {"name": "h", "group": "inputs", "definition": "random(-8..8 except 0)", "description": "

vertical dimension of rectangles and triangles

", "templateType": "anything"}, "r": {"name": "r", "group": "inputs", "definition": "b", "description": "

radius of circle or semicircles.

", "templateType": "anything"}, "index": {"name": "index", "group": "inputs", "definition": "random(1..14)", "description": "

selects the shape -- see resources for diagram

", "templateType": "anything"}, "shape": {"name": "shape", "group": "Description", "definition": "if(index=1,'circle',if(index<=4,'rectangle',if(index <=10,'triangle',if(index<=12,'semicircle','quarter-circle'))))", "description": "", "templateType": "anything"}, "dimensions": {"name": "dimensions", "group": "Description", "definition": "if(isCircular,\n \"$r = \\\\var{abs(b units) }$\",\n \"$\\\\var{abs(b units)} \\\\times \\\\var{abs(h units)}$\"\n) ", "description": "", "templateType": "anything"}, "isCircular": {"name": "isCircular", "group": "Description", "definition": "index = 1 or index > 10", "description": "", "templateType": "anything"}, "units": {"name": "units", "group": "inputs", "definition": "qty(random(['in', 'ft', 'mm', 'cm','m']))", "description": "", "templateType": "anything"}, "Ix": {"name": "Ix", "group": "Solution", "definition": "siground([ 0,pir4/4, \n bh3/3, bh3/12, bh3/3, \n bh3/12, bh3/12, bh3/36, bh3/36, bh3/12,bh3/36,\n pir4/8,pir4/8,\n pir4/16,pir4/16][index],4)", "description": "

0 is placeholder for zero-indexed array.

", "templateType": "anything"}, "PIR4": {"name": "PIR4", "group": "Solution", "definition": "pi r^4 * units * units * units * units", "description": "", "templateType": "anything"}, "bh3": {"name": "bh3", "group": "Solution", "definition": "abs(b h^3) * units * units * units * units", "description": "", "templateType": "anything"}, "hb3": {"name": "hb3", "group": "Solution", "definition": "abs(h b^3) * units * units * units * units", "description": "", "templateType": "anything"}, "Iy": {"name": "Iy", "group": "Solution", "definition": "siground([0, pir4/4,\n hb3/3, hb3/3, hb3/12,\n hb3/4, hb3/12, hb3/4, hb3/12, hb3/36, hb3/36,\n pir4/8,pir4/8,\n pir4/16,pir4/16][index],4)", "description": "", "templateType": "anything"}, "centroidalaxis": {"name": "centroidalaxis", "group": "Solution", "definition": "[[],both,neither, x, y, neither, neither, x, x, y, both, x, y, neither, neither][index]\n ", "description": "

marking matrix for centroidal axis [x,y,both,neither] 

", "templateType": "anything"}, "x": {"name": "x", "group": "Solution", "definition": "[10,0,0,0]", "description": "", "templateType": "anything"}, "y": {"name": "y", "group": "Solution", "definition": "[0,10,0,0]", "description": "", "templateType": "anything"}, "both": {"name": "both", "group": "Solution", "definition": "[0,0,10,0]", "description": "", "templateType": "anything"}, "neither": {"name": "neither", "group": "Solution", "definition": "[0,0,0,10]", "description": "", "templateType": "anything"}, "applet": {"name": "applet", "group": "Ungrouped variables", "definition": "\"applet()\"", "description": "

disabled calling the javascript applet

", "templateType": "anything"}, "Z": {"name": "Z", "group": "inputs", "definition": "8", "description": "

ZOOM

", "templateType": "anything"}}, "variablesTest": {"condition": "abs(b)> 2 and abs(h) > 2", "maxRuns": 100}, "ungrouped_variables": ["applet"], "variable_groups": [{"name": "inputs", "variables": ["h", "r", "b", "index", "units", "Z"]}, {"name": "Description", "variables": ["shape", "dimensions", "isCircular"]}, {"name": "Solution", "variables": ["Ix", "PIR4", "bh3", "hb3", "Iy", "centroidalaxis", "x", "y", "both", "neither"]}], "functions": {"NotUsed": {"parameters": [], "type": "ggbapplet", "language": "javascript", "definition": "// Create the worksheet. \n// This function returns an object with a container `element` and a `promise` resolving to a GeoGebra applet.\nvar params = {\n filename: 'resources/question-resources/basicShapes.ggb',\n width: 250,\n height: 250\n}\n\nvar result = Numbas.extensions.geogebra.createGeogebraApplet(params);\n\n// Once the applet has loaded, run some commands to manipulate the worksheet.\nresult.promise.then(function(d) {\n var app = d.app;\n question.applet = d;\n \n function setGGBPoint(g_name, n_name = g_name) {\n // moves point in GGB to location of Numbas Vector Variable\n // g_name = geogebra point, n_name = numbas vector\n var pt = question.scope.evaluate(n_name).value\n app.setFixed(g_name,false,false);\n app.setCoords(g_name, pt[0], pt[1]);\n app.setFixed(g_name,true,true);\n }\n \n function setGGBNumber(g_name, n_name = g_name) {\n // Sets number in GGB to a Numbas Variable\n var n = question.scope.evaluate(n_name).value;\n app.setValue(g_name,n);\n }\n \n app.setValue(\"Z\",5); //zoom\n setGGBNumber(\"b\");\n setGGBNumber(\"h\");\n setGGBNumber(\"i\",\"index\")\n\n});\n\n// This function returns the result of `createGeogebraApplet` as an object \n// with the JME data type 'ggbapplet', which can be substituted into the question's content.\nreturn new Numbas.jme.types.ggbapplet(result);"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Determine the moment of inertia of the {shape} with respect to the $x$ and $y$ axis.

\n

$I_x$ =   [[0]] $I_y$ = [[1]]

\n

Are either of these values centroidal moments of inertia?

\n

[[2]]

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "Ix", "marks": "20", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "Ix", "right": "0.2", "close": "1.0", "C1": "80", "C2": "80", "C3": "60"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "Iy", "marks": "20", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "Iy", "right": "0.2", "close": "1.0", "C1": "80", "C2": "80", "C3": "60"}}, {"type": "1_n_2", "useCustomName": true, "customName": "centroidal", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": "1", "showCellAnswerState": true, "choices": ["$I_x$", "$I_y$", "Both", "Neither"], "matrix": "centroidalaxis"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}]}]}], "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}]}