// Numbas version: finer_feedback_settings {"name": "Musa's copy of 3 Integration: solving for constant", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Musa's copy of 3 Integration: solving for constant", "tags": [], "metadata": {"description": "
Recovering\noriginal function given some information such as derivative and value at some point.
Find the orginal function $f(x)$ given $f^\\prime (x)$ and value $f(x_0) = C_0;$ that is solve for constant for $\\int f^\\prime (x) \\,dx.$
", "advice": "Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]
\n\nFirst integrate:
\n(*) $\\int f^\\prime (x)\\,dx$ = $\\int\\;(a x^n+ c)\\,dx=\\; \\frac{a}{n+1}x^{n+1} + cx +C$
\nthen calculate the value of $C$ from
\n$\\frac{a}{n+1}x_0^{n+1} + cx_0 +C = C_0$
\nand put in back to (*).
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "extensions": [], "variables": {"a5": {"name": "a5", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything"}, "an5": {"name": "an5", "group": "Ungrouped variables", "definition": "random(-5,-4,-3,-2,4,5,6,7,8)", "description": "", "templateType": "anything"}, "c5": {"name": "c5", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "x0": {"name": "x0", "group": "Ungrouped variables", "definition": "random(-1,0,1,2)", "description": "", "templateType": "anything"}, "C0": {"name": "C0", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "a52": {"name": "a52", "group": "Ungrouped variables", "definition": "random(-5..5 except [-1,0,1])", "description": "", "templateType": "anything"}, "an52": {"name": "an52", "group": "Ungrouped variables", "definition": "random(-5,-4,-3,-2,4,5,6,7,8)", "description": "", "templateType": "anything"}, "c52": {"name": "c52", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "x02": {"name": "x02", "group": "Ungrouped variables", "definition": "random(-1,0,1,2)", "description": "", "templateType": "anything"}, "C02": {"name": "C02", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "an": {"name": "an", "group": "Ungrouped variables", "definition": "random(-3..3 except 0)", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "xp0": {"name": "xp0", "group": "Ungrouped variables", "definition": "random(1,2,3)", "description": "", "templateType": "anything"}, "Cp0": {"name": "Cp0", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "xp02": {"name": "xp02", "group": "Ungrouped variables", "definition": "random(1,2,3)", "description": "", "templateType": "anything"}, "Cp02": {"name": "Cp02", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "an2": {"name": "an2", "group": "Ungrouped variables", "definition": "random(-3..3 except 0)", "description": "", "templateType": "anything"}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a5", "an5", "c5", "x0", "C0", "a52", "an52", "c52", "x02", "C02", "a", "an", "c", "xp0", "Cp0", "xp02", "Cp02", "c2", "an2", "a2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "$f^\\prime (x) = \\simplify[std]{ {a5}* x^{an5}+ {c5}}, ~~~ f(\\var{x0}) = \\var{C0}$
\n$\\displaystyle \\int\\;(\\simplify[std]{ {a5}* x^{an5}+ {c5}})\\,dx=\\;$[[0]]
\n$f (x)=\\;$[[1]]
\nInput all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.
\nClick on Show steps to get more information. You will not lose any marks by doing so.
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C\\\\ \\end{eqnarray*}\\]
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "({a5}/{an5+1})*(x^{(an5+1)})+{c5}*x+C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "Input all numbers as integers or fractions and not decimals.
"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "({a5}/{an5+1})*(x^{(an5+1)})+{c5}*x+({C0}-({a5}/{an5+1})*({x0}^{(an5+1)})-{c5*x0})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "$f^\\prime (x) = \\simplify[std]{ {a} sin({an}x) + {c}}, ~~~ f(\\var{xp0*pi}) = \\var{Cp0}$
\n$\\displaystyle \\int\\;(\\simplify[std]{ {a} sin({an}x)+ {c}})\\,dx=\\;$[[0]]
\n$f(x)=\\;$[[1]]
\nInput all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.
\nPut 'pi' for $\\pi$ and do not use decimals.
\nClick on Show steps to get more information. You will not lose any marks by doing so.
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C\\\\ \\end{eqnarray*}\\]
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{-a/an}*cos({an}x)+ {c}x + C", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [1, 2], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "Input all numbers as integers or fractions and not decimals.
"}, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{-a/an}*cos({an}x)+{c}x + {Cp0} -{-a/an}*cos({an*xp0}pi)- {c*xp0}pi", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Musa Mammadov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4417/"}]}