// Numbas version: finer_feedback_settings {"name": "Intersezione di due rette nel piano cartesiano (soluzione analitica)", "extensions": ["geogebra"], "custom_part_types": [{"source": {"pk": 1, "author": {"name": "Christian Lawson-Perfect", "pk": 7}, "edit_page": "/part_type/1/edit"}, "name": "Yes/no", "short_name": "yes-no", "description": "

The student is shown two radio choices: \"Yes\" and \"No\". One of them is correct.

", "help_url": "", "input_widget": "radios", "input_options": {"correctAnswer": "if(eval(settings[\"correct_answer_expr\"]), 0, 1)", "hint": {"static": true, "value": ""}, "choices": {"static": true, "value": ["Yes", "No"]}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nif(studentanswer=correct_answer,\n correct(),\n incorrect()\n)\n\ninterpreted_answer:\nstudentAnswer=0\n\ncorrect_answer:\nif(eval(settings[\"correct_answer_expr\"]),0,1)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "if(studentanswer=correct_answer,\n correct(),\n incorrect()\n)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "studentAnswer=0"}, {"name": "correct_answer", "description": "", "definition": "if(eval(settings[\"correct_answer_expr\"]),0,1)"}], "settings": [{"name": "correct_answer_expr", "label": "Is the answer \"Yes\"?", "help_url": "", "hint": "An expression which evaluates to true or false.", "input_type": "mathematical_expression", "default_value": "true", "subvars": false}], "public_availability": "always", "published": true, "extensions": []}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Intersezione di due rette nel piano cartesiano (soluzione analitica)", "tags": [], "metadata": {"description": "

Risolvi per $x$ e $y$:  \\[ \\begin{eqnarray} a_1x+b_1y&=&c_1\\\\   a_2x+b_2y&=&c_2 \\end{eqnarray} \\]

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Determina analiticamente le coordinate del punto di intersezione delle rette  $r : \\, \\simplify[std]{{a}x+{b}y-{c}} = 0$  e  $s : \\, \\simplify[std]{{a1}x+{b1}y-{c1}} = 0$.

\n

Inserisci le risposte come frazioni o numeri interi, non come numeri decimali.

", "advice": "

\\[ \\left\\lbrace \\begin{eqnarray} \\simplify[std]{{a}x+{b}y}&=&\\var{c}&\\mbox{ ........(1)}\\\\ \\simplify[std]{{a1}x+{b1}y}&=&\\var{c1}&\\mbox{ ........(2)} \\end{eqnarray} \\right. \\]
Per risolvere per $x$ moltiplica l'equazione (1) per {this} e l'equazione (2) per {that}

\n

Ciò dà:
\\[ \\left\\lbrace\\begin{eqnarray} \\simplify[std]{{a*this}x+{b*this}y}&=&\\var{this*c}&\\mbox{ ........(3)}\\\\ \\simplify[std]{{a1*that}x+{b1*that}y}&=&\\var{that*c1}&\\mbox{ ........(4)} \\end{eqnarray} \\right.\\]
Ora {aort} (4) {fromorto} (3) per ottenere
\\[\\simplify[std]{({a*this}+{s6*a1*that})x={this*c}+{s6*that*c1}}\\]
Così otteniamo la soluzione per $x$:
\\[x = \\simplify{{c*b1-b*c1}/{b1*a-a1*b}}\\]
La sostituzione in una qualunque delle equazioni (1) e (2) dà:
\\[y = \\simplify{{c*a1-a*c1}/{b*a1-a*b1}}\\]
Puoi controllare che entrambe le soluzioni sono corrette vedendo che soddisfano entrambe le equazioni (1) e (2) attraverso la sostituzione di questi valori nelle equazioni.

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "extensions": ["geogebra"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "aort": {"name": "aort", "group": "Ungrouped variables", "definition": "if(b*b1>0,'sottraiamo l\\'equazione','sommiamo l\\'equazione')", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "sb*random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "sc*random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "sc": {"name": "sc", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "sc1": {"name": "sc1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "if(a*b2=a1*b,b2+1,b2)", "description": "", "templateType": "anything", "can_override": false}, "fromorto": {"name": "fromorto", "group": "Ungrouped variables", "definition": "if(b*b1>0,'dalla','alla')", "description": "", "templateType": "anything", "can_override": false}, "that": {"name": "that", "group": "Ungrouped variables", "definition": "lcm(abs(b),abs(b1))/abs(b1)", "description": "", "templateType": "anything", "can_override": false}, "sb": {"name": "sb", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "this": {"name": "this", "group": "Ungrouped variables", "definition": "lcm(abs(b),abs(b1))/abs(b)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "sc1*random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "s6": {"name": "s6", "group": "Ungrouped variables", "definition": "if(b*b1>0,-1,1)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "sa*random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "switch(a2=2,random(3,5,7,9),a2=3,random(2,4,5,7),a2=4,random(3,5,7,9),a2=5,random(3,4,6,7,9),a2=6,random(4,5,7,8,9),a2=7,random(3,4,5,6,8,9),a2=8,random(3,5,6,7,9),a2=9,random(2,4,5,7,8),9)", "description": "", "templateType": "anything", "can_override": false}, "sa": {"name": "sa", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "abs(a)", "description": "", "templateType": "anything", "can_override": false}, "rdef": {"name": "rdef", "group": "Ungrouped variables", "definition": "vector(a,b,-c)", "description": "

Coefficienti della retta $r$ (in forma implicita)

", "templateType": "anything", "can_override": false}, "sdef": {"name": "sdef", "group": "Ungrouped variables", "definition": "vector(a1,b1,-c1)", "description": "

Coefficienti della retta $s$ (in forma implicita)

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "that", "this", "sc1", "s1", "s6", "a1", "aort", "a2", "b1", "b2", "sc", "sb", "sa", "fromorto", "c1", "rdef", "sdef"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Risoluzione analitica", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Fai i calcoli su un foglio e poi carica una foto utilizzando il bottone qui sotto.

\n

Contrassegna chiaramente il file in modo che sia attribuibile a te (per esempio chiamandolo il_mio_cognome.jpg)

\n

N.B. Se compare una finestra di dialogo, clicca su \"Rimani sulla pagina\": si dovrebbe aprire comunque il link in un nuovo pannello.

\n

\n

Hai caricato il file?

\n

[[0]]

", "stepsPenalty": "0", "steps": [{"type": "information", "useCustomName": true, "customName": "Sistema", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

La richiesta è equivalente a quella di risolvere il seguente sistema lineare nelle variabili $x$ e $y$:

\n

\\[ \\left\\lbrace \\begin{eqnarray} \\simplify[std]{{a}x+{b}y}&=&\\var{c}\\\\ \\simplify[std]{{a1}x+{b1}y}&=&\\var{c1} \\end{eqnarray} \\right. \\]

"}], "gaps": [{"type": "yes-no", "useCustomName": true, "customName": "fileloaded", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correct_answer_expr": "true"}}], "sortAnswers": true}, {"type": "gapfill", "useCustomName": true, "customName": "Soluzione", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$x=\\phantom{{}}$[[0]]

\n

$y=\\phantom{{}}$[[1]]

\n

Inserisci le tue risposte in forma di numeri interi e frazioni, non numeri decimali.

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "x", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{c*b1-b*c1}/{b1*a-a1*b}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Inserisci una frazione o un numero intero, non un numero decimale.

"}, "valuegenerators": []}, {"type": "jme", "useCustomName": true, "customName": "y", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{c*a1-a*c1}/{b*a1-a*b1}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Inserisci una frazione o un numero intero, non un numero decimale.

"}, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Irene Paniccia", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4869/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Irene Paniccia", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4869/"}]}