// Numbas version: finer_feedback_settings {"name": "Chain Rule 05", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Chain Rule 05", "tags": [], "metadata": {"description": "Instructional \"drill\" exercise to emphasize the method.", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

We use the CHAIN RULE (also called the FUNCTION OF A FUNCTION RULE) when the function that we need to differentiate is actually one function \"nested\" inside another.

\n

If $y=f(g(x))$  to find $\\frac{dy}{dx}$ , we need to do two things::

\n
    \n
  1. Substitute $u=g(x)$  so that $y=f(u)$
  2. \n
  3. Use the Chain Rule:
  4. \n
\n

\\[ \\large  \\frac{dy}{dx}=\\frac{du}{dx} \\times \\frac{dy}{du}  \\]

\n

\n
\n

", "advice": "

We are asked to differentiate:

\n

\\[  y=\\sin{(\\simplify{{CF1}x}+e^{x})}   \\]

\n

\n

Recognising that this is a \"function of another function\", we need to identify the \"innermost\" of the two functions that are involved and substitute $u$

\n

\n

Let   $u=\\simplify{{CF1}x}+e^{x}$          then          $y=sin(u)$

\n

\n

Now, we need to use the approriate techniques to differentiate each of these, for the first of these we need the Power Rule and for the second, your Table of Derivatives.:

\n

\n

Applying this method gives us:

\n

$\\large \\frac{du}{dx}=\\simplify{{CF1}}+e^{x}$          and          $ \\large \\frac{dy}{du}= cos(u)$

\n

\n

 

\n

We now use the Chain Rule formula:

\n

$ \\large  \\large  \\frac{dy}{dx}=\\frac{du}{dx} \\times \\frac{dy}{du}   $

\n

Make the appropriate substitutions into the formula:

\n

\n

$ \\large  \\frac{dy}{dx}= (\\simplify{{CF1}}+e^{x}) \\times cos(u) $

\n

\n

 

\n

Which simplifies to:

\n

$ \\large  \\frac{dy}{dx}=(\\simplify{{CF1}}+e^{x}) cos(u)$

\n

\n

Now, finally, we must remember that $u$ was a variable that we introduced and was not part of the original problem. 

\n

\n

Replace $u$ from our original substitution to give the final answer:

\n

\n

$\\large  \\frac{dy}{dx}=(\\simplify{{CF1}}+e^{x}) cos(\\simplify{{CF1}x}+e^{x})$

\n

\n

\n

\n

\n

 

\n

\n

 

", "rulesets": {}, "extensions": [], "variables": {"CF1": {"name": "CF1", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["CF1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Differentiate $   y=\\sin{(\\simplify{{CF1}x}+e^{x})}  $

\n

First identify the \"innermost\" function, and substitute $u$:

\n

Let   $u=$[[0]]          Then          $y=$[[1]]

\n

Then:

\n

$  \\large  \\frac{du}{dx}=  $[[2]]          and          $  \\large  \\frac{dy}{du}=  $[[3]]

\n

Now using:

\n

$\\large  \\frac{dy}{dx}=\\frac{du}{dx} \\times \\frac{dy}{du}$

\n

\n

$\\large  \\frac{dy}{dx}=$[[4]]$\\times$[[5]]

\n

Which simplifies to:

\n

$\\large  \\frac{dy}{dx}=$[[6]]

\n

\n

Remember that $u$ was a variable that we introduced and not part of the original problem. 

\n

Replace $u$ from our substitution to give the final answer:

\n

$\\large  \\frac{dy}{dx}=$[[7]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{CF1}x+e^(x)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "sin(u)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "u", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{CF1}+e^{x}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "cos(u)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "u", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{CF1}+e^{x}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "cos(u)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "u", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({CF1}+e^{x})*cos(u)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "u", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({CF1}+e^{x})*cos({CF1}x+e^(x))", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}]}]}], "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}]}