// Numbas version: finer_feedback_settings {"name": "Complex Numbers; Multiplication 01 (Rect')", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Complex Numbers; Multiplication 01 (Rect')", "tags": [], "metadata": {"description": "Multiplication of complex numbers (in rectangular, Cartesian form)", "licence": "All rights reserved"}, "statement": "
The technique should be very familiar. It is exactly the same as multiplying out two brackets.
\nThe workings below probably include more steps than really neccesary once you get used to doing it.
\n$\\large z_1=\\var{z1}$ and $\\large z_2=\\var{z2}$
\n\n$\\large z_1z_2=(\\var{z1})(\\var{z2})$
\n$\\large z_1z_2=(\\var{r1})(\\var{r2})+(\\var{r1})(\\var{i2})i+(\\var{i1})(\\var{r2})i+(\\var{i1})(\\var{i2})i^2$
\n$\\large z_1z_2=\\simplify{{r1}{r2}}+\\simplify{{r1}{i2}}i+\\simplify{{i1}{r2}}i+\\simplify{{i1}{i2}}i^2$
\n$\\large z_1z_2=\\simplify{{r1}{r2}}+\\simplify{{r1}{i2}+{i1}{r2}}i+\\simplify{{i1}{i2}}i^2$
\nNow here is the extra \"twist\" that comes from doing this with complex numbers. Remember that $i=\\sqrt{-1}$ so $i^2=-1$:
\n$\\large z_1z_2=\\simplify{{r1}{r2}}+\\simplify{{r1}{i2}+{i1}{r2}}i+\\simplify{{i1}{i2}i^2}$
\n$\\large z_1z_2=\\simplify{{z1}*{z2}}$
\n\n\n
$\\large z_3=\\var{z3}$ and $\\large z_4=\\var{z4}$
\n\n$\\large z_3z_4=(\\var{z3})(\\var{z4})$
\n$\\large z_3z_4=(\\var{r3})(\\var{r4})+(\\var{r3})(\\var{i4})i+(\\var{i3})(\\var{r4})i+(\\var{i3})(\\var{i4})i^2$
\n$\\large z_3z_4=\\simplify{{r3}{r4}}+\\simplify{{r3}{i4}}i+\\simplify{{i3}{r4}}i+\\simplify{{i3}{i4}}i^2$
\n$\\large z_3z_4=\\simplify{{r3}{r4}}+\\simplify{{r3}{i4}+{i3}{r4}}i+\\simplify{{i3}{i4}}i^2$
\nRemember that $i=\\sqrt{-1}$ so $i^2=-1$:
\n$\\large z_3z_4=\\simplify{{r3}{r4}}+\\simplify{{r3}{i4}+{i3}{r4}}i+\\simplify{{i3}{i4}i^2}$
\n$\\large z_1z_2=\\simplify{{z1}*{z2}}$
\n$\\large z_5=\\var{z5}$ and $\\large z_6=\\var{cc1}$
\n\n$\\large z_5z_6=(\\var{z5})(\\var{cc1})$
\n$\\large z_5z_6=(\\var{r5})(\\var{rcc1})+(\\var{r5})(\\var{icc1})i+(\\var{i5})(\\var{rcc1})i+(\\var{i5})(\\var{icc1})i^2$
\n$\\large z_5z_6=\\simplify{{r5}{rcc1}}+\\simplify{{r5}{icc1}}i+\\simplify{{i5}{rcc1}}i+\\simplify{{i5}{icc1}}i^2$
\n$\\large z_5z_6=\\simplify{{r5}{rcc1}}+\\simplify{{r5}{icc1}+{i5}{rcc1}}i+\\simplify{{i5}{icc1}}i^2$
\nRemember that $i=\\sqrt{-1}$ so $i^2=-1$:
\n$\\large z_5z_6=\\simplify{{r5}{rcc1}}+\\simplify{{r5}{icc1}+{i5}{rcc1}}i+\\simplify{{i5}{icc1}i^2}$
\n$\\large z_5z_6=\\simplify{{z5}*{cc1}}$
\n\n\n
$\\large z_1=\\var{z1}$ and $\\large z_1^*=\\var{cc1}$
\n\n\n$\\large z_1z_1^*=(\\var{z1})(\\var{cc1})$
\n$\\large z_1z_1^*=(\\var{r1})(\\var{rcc1})+(\\var{r1})(\\var{icc1})i+(\\var{i1})(\\var{rcc1})i+(\\var{i1})(\\var{icc1})i^2$
\n$\\large z_1z_1^*=\\simplify{{r1}{rcc1}}+\\simplify{{r1}{icc1}}i+\\simplify{{i1}{rcc1}}i+\\simplify{{i1}{icc1}}i^2$
\n$\\large z_1z_1^*=\\simplify{{r1}{rcc1}}+\\simplify{{r1}{icc1}+{i1}{rcc1}}i+\\simplify{{i1}{icc1}}i^2$
\nRemember that $i=\\sqrt{-1}$ so $i^2=-1$:
\n$\\large z_1z_1^*=\\simplify{{r1}{rcc1}}+\\simplify{{r1}{icc1}+{i1}{rcc1}}i+\\simplify{{i1}{icc1}i^2}$
\n$\\large z_1z_1^*=\\simplify{{z1}*{cc1}}$
\n\n\n
$\\large z_2=\\var{z1}$ and $\\large z_2^*=\\var{cc2}$
\n\n\nEvaluate:
$\\large z_2z_2^*=(\\var{z2})(\\var{cc2})$
$\\large z_2z_2^*=(\\var{r2})(\\var{rcc2})+(\\var{r2})(\\var{icc2})i+(\\var{i2})(\\var{rcc2})i+(\\var{i2})(\\var{icc2})i^2$
\n$\\large z_2z_2^*=\\simplify{{r2}{rcc2}}+\\simplify{{r2}{icc2}}i+\\simplify{{i2}{rcc2}}i+\\simplify{{i2}{icc2}}i^2$
\n$\\large z_2z_2^*=\\simplify{{r2}{rcc2}}+\\simplify{{r2}{icc2}+{i2}{rcc2}}i+\\simplify{{i2}{icc2}}i^2$
\nRemember that $i=\\sqrt{-1}$ so $i^2=-1$:
\n$\\large z_2z_2^*=\\simplify{{r2}{rcc2}}+\\simplify{{r2}{icc2}+{i2}{rcc2}}i+\\simplify{{i2}{icc2}i^2}$
\n$\\large z_2z_2^*=\\simplify{{z2}*{cc2}}$
", "rulesets": {}, "extensions": [], "variables": {"r1": {"name": "r1", "group": "CN1", "definition": "random(2..25)", "description": "", "templateType": "anything"}, "i1": {"name": "i1", "group": "CN1", "definition": "random(2..25 except r1)", "description": "", "templateType": "anything"}, "r2": {"name": "r2", "group": "CN2", "definition": "random(2..25 except r1)", "description": "", "templateType": "anything"}, "i2": {"name": "i2", "group": "CN2", "definition": "random(2..25 except r1 except r2)", "description": "", "templateType": "anything"}, "r3": {"name": "r3", "group": "CN3", "definition": "random(-25..25 except 0 except r1 except r2)", "description": "", "templateType": "anything"}, "i3": {"name": "i3", "group": "CN3", "definition": "random(2..25 except r3 except r1 except r2)", "description": "", "templateType": "anything"}, "r4": {"name": "r4", "group": "CN4", "definition": "random(-10..10)", "description": "", "templateType": "anything"}, "i4": {"name": "i4", "group": "CN4", "definition": "random(-10..10 except 0 except r4)", "description": "", "templateType": "anything"}, "r5": {"name": "r5", "group": "CN5", "definition": "random(-10..10 except r4)", "description": "", "templateType": "anything"}, "i5": {"name": "i5", "group": "CN5", "definition": "random(-10..10 except r5)", "description": "", "templateType": "anything"}, "z1": {"name": "z1", "group": "CN1", "definition": "r1+i(i1)", "description": "", "templateType": "anything"}, "z2": {"name": "z2", "group": "CN2", "definition": "r2+i(i2)", "description": "", "templateType": "anything"}, "z3": {"name": "z3", "group": "CN3", "definition": "r3+i(i3)", "description": "", "templateType": "anything"}, "z4": {"name": "z4", "group": "CN4", "definition": "r4+i(i4)", "description": "", "templateType": "anything"}, "z5": {"name": "z5", "group": "CN5", "definition": "r5+i(i5)", "description": "", "templateType": "anything"}, "cc1": {"name": "cc1", "group": "CN1", "definition": "conj(z1)", "description": "", "templateType": "anything"}, "cc2": {"name": "cc2", "group": "CN2", "definition": "conj(z2)", "description": "", "templateType": "anything"}, "cc3": {"name": "cc3", "group": "CN3", "definition": "conj(z3)", "description": "", "templateType": "anything"}, "cc4": {"name": "cc4", "group": "CN4", "definition": "conj(z4)", "description": "", "templateType": "anything"}, "cc5": {"name": "cc5", "group": "CN5", "definition": "conj(z5)", "description": "", "templateType": "anything"}, "rcc1": {"name": "rcc1", "group": "CN1", "definition": "re(cc1)", "description": "", "templateType": "anything"}, "icc1": {"name": "icc1", "group": "CN1", "definition": "im(cc1)", "description": "", "templateType": "anything"}, "rcc2": {"name": "rcc2", "group": "CN2", "definition": "re(cc2)", "description": "", "templateType": "anything"}, "icc2": {"name": "icc2", "group": "CN2", "definition": "im(cc2)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "CN1", "variables": ["r1", "i1", "z1", "cc1", "rcc1", "icc1"]}, {"name": "CN2", "variables": ["r2", "i2", "z2", "cc2", "rcc2", "icc2"]}, {"name": "CN3", "variables": ["r3", "i3", "z3", "cc3"]}, {"name": "CN4", "variables": ["r4", "i4", "z4", "cc4"]}, {"name": "CN5", "variables": ["r5", "i5", "z5", "cc5"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": false, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "$\\large z_1=\\var{z1}$ and $\\large z_2=\\var{z2}$
\n\n$\\large z_1z_2=$ [[0]]
\n\n\n
$\\large z_3=\\var{z3}$ and $\\large z_4=\\var{z4}$
\n\n$\\large z_3z_4=$ [[1]]
\n\n\n
$\\large z_5=\\var{z5}$, $\\large z_6=\\var{cc1}$
\n\n\n$\\large z_5z_6=$ [[2]]
\n\n
$\\large z_1=\\var{z1}$ and $\\large z_1^*=\\var{cc1}$
\n\n$\\large z_1z_1^*=$ [[3]]
\n$\\large z_2=\\var{z2}$ and $\\large z_2^*=\\var{cc2}$
\n\n$\\large z_1z_1^*=$ [[4]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{z1}*{z2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{z3}*{z4}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{z5}*{cc1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{z1}*{cc1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{z2}*{cc2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}], "type": "question", "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}]}]}], "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}]}