// Numbas version: finer_feedback_settings {"name": "Matrices: Determinants 01", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Matrices: Determinants 01", "tags": [], "metadata": {"description": "

Determinant of 2x2 and notation

\n

Students are asked to form the calculation before giving answer.

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

The determinant of the matrix:

\n

$\\large A= \\left( \\begin{array}{ccc} a & b  \\\\ c & d  \\end{array} \\right) $  is denoted by   $\\large \\left| \\begin{array}{ccc} a & b  \\\\ c & d  \\end{array} \\right| $

\n

and is defined to be the number  $ad-bc$. That is:

\n

$\\large \\left| \\begin{array}{ccc} a & b  \\\\ c & d  \\end{array} \\right| =ad-bc$

\n

 

\n

We can use the notation  $det(A)$  or  $|A|$  or  $\\Delta$  to denote the determinant of $A$.

", "advice": "

We are asked to calculate the determinants of some  $2 \\times 2$  matrices:

\n

 We simply have to carry out this calculation for each one,

\n

$\\large \\left| \\begin{array}{ccc} a & b  \\\\ c & d  \\end{array} \\right| =ad-bc$

\n

 $A=\\var{A}$

\n

$|A|=\\left|\\begin{array}{ccc}\\var{A[0][0]} & \\var{A[0][1]} \\\\\\var{A[1][0]} & \\var{A[1][1]} \\end{array}\\right| =\\var{Apart1}\\large -\\var{Apart2}=\\var{detA}$

\n

 

\n

 $B=\\var{B}$

\n

$|B|=\\left|\\begin{array}{ccc}\\var{B[0][0]} & \\var{B[0][1]} \\\\\\var{B[1][0]} & \\var{B[1][1]} \\end{array}\\right| =\\var{Bpart1}\\large -\\var{Bpart2}=\\var{detB}$

\n

 

\n

 $C=\\var{C}$

\n

$|C|= \\left|\\begin{array}{ccc}\\var{C[0][0]} & \\var{C[0][1]} \\\\\\var{C[1][0]} & \\var{C[1][1]} \\end{array}\\right| =\\var{Cpart1}\\large -\\var{Cpart2}=\\var{detC}$

\n

 

\n

$D=\\var{D}$

\n

$|D|= \\left|\\begin{array}{ccc}\\var{D[0][0]} & \\var{D[0][1]} \\\\\\var{D[1][0]} & \\var{D[1][1]} \\end{array}\\right| =\\var{Dpart1}\\large -\\var{Dpart2}=\\var{detD}$

\n

 

\n

 

", "rulesets": {}, "extensions": [], "variables": {"n1": {"name": "n1", "group": "Ungrouped variables", "definition": "2", "description": "", "templateType": "number"}, "m1": {"name": "m1", "group": "Ungrouped variables", "definition": "n1", "description": "", "templateType": "anything"}, "A": {"name": "A", "group": "Matrix A", "definition": "transpose(matrix(repeat(repeat(random(1..9),n1),m1)))", "description": "", "templateType": "anything"}, "detA": {"name": "detA", "group": "Matrix A", "definition": "det(A)", "description": "", "templateType": "anything"}, "Apart1": {"name": "Apart1", "group": "Matrix A", "definition": "(A[0][0])*(A[1][1])", "description": "", "templateType": "anything"}, "Apart2": {"name": "Apart2", "group": "Matrix A", "definition": "(A[0][1])*(A[1][0])", "description": "", "templateType": "anything"}, "B": {"name": "B", "group": "Matrix B", "definition": "transpose(matrix(repeat(repeat(random(0..9),n1),m1)))", "description": "", "templateType": "anything"}, "Bpart1": {"name": "Bpart1", "group": "Matrix B", "definition": "(B[0][0])*(B[1][1])", "description": "", "templateType": "anything"}, "Bpart2": {"name": "Bpart2", "group": "Matrix B", "definition": "(B[0][1])*(B[1][0])", "description": "", "templateType": "anything"}, "detB": {"name": "detB", "group": "Matrix B", "definition": "det(B)", "description": "", "templateType": "anything"}, "C": {"name": "C", "group": "Matrix C", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n1),m1)))", "description": "", "templateType": "anything"}, "detC": {"name": "detC", "group": "Matrix C", "definition": "det(C)", "description": "", "templateType": "anything"}, "Cpart1": {"name": "Cpart1", "group": "Matrix C", "definition": "(C[0][0])*(C[1][1])", "description": "", "templateType": "anything"}, "Cpart2": {"name": "Cpart2", "group": "Matrix C", "definition": "(C[0][1])*(C[1][0])", "description": "", "templateType": "anything"}, "D": {"name": "D", "group": "Matrix ", "definition": "transpose(matrix(repeat(repeat(random(-9..-1),n1),m1)))", "description": "", "templateType": "anything"}, "Dpart1": {"name": "Dpart1", "group": "Matrix ", "definition": "(D[0][0])*(D[1][1])", "description": "", "templateType": "anything"}, "Dpart2": {"name": "Dpart2", "group": "Matrix ", "definition": "(D[0][1])*(D[1][0])", "description": "", "templateType": "anything"}, "detD": {"name": "detD", "group": "Matrix ", "definition": "det(D)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n1", "m1"], "variable_groups": [{"name": "Matrix A", "variables": ["A", "Apart1", "Apart2", "detA"]}, {"name": "Matrix B", "variables": ["B", "Bpart1", "Bpart2", "detB"]}, {"name": "Matrix C", "variables": ["C", "Cpart1", "Cpart2", "detC"]}, {"name": "Matrix ", "variables": ["D", "Dpart1", "Dpart2", "detD"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the determinants of the following matrices:

\n

 

\n

 $A=\\var{A}$

\n

$|A|=\\left|\\begin{array}{ccc}\\var{A[0][0]} & \\var{A[0][1]} \\\\\\var{A[1][0]} & \\var{A[1][1]} \\end{array}\\right| =$ [[0]]$\\large -$[[1]]$=$ [[2]]

\n

 

\n

 $B=\\var{B}$

\n

$|B|=\\left|\\begin{array}{ccc}\\var{B[0][0]} & \\var{B[0][1]} \\\\\\var{B[1][0]} & \\var{B[1][1]} \\end{array}\\right| =$ [[3]]$\\large -$[[4]]$=$ [[5]]

\n

 

\n

 $C=\\var{C}$

\n

$|C|= \\left|\\begin{array}{ccc}\\var{C[0][0]} & \\var{C[0][1]} \\\\\\var{C[1][0]} & \\var{C[1][1]} \\end{array}\\right| =$ [[6]]$\\large -$[[7]]$=$ [[8]]

\n

 

\n

$D=\\var{D}$

\n

$|D|= \\left|\\begin{array}{ccc}\\var{D[0][0]} & \\var{D[0][1]} \\\\\\var{D[1][0]} & \\var{D[1][1]} \\end{array}\\right| =$ [[9]]$\\large -$[[10]]$=$ [[11]]

\n

 

\n

 

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{Apart1}", "maxValue": "{Apart1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{Apart2}", "maxValue": "{Apart2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{detA}", "maxValue": "{detA}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{Bpart1}", "maxValue": "{Bpart1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{Bpart2}", "maxValue": "{Bpart2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{detB}", "maxValue": "{detB}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{Cpart1}", "maxValue": "{Cpart1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{Cpart2}", "maxValue": "{Cpart2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{detC}", "maxValue": "{detC}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{Dpart1}", "maxValue": "{Dpart1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{Dpart2}", "maxValue": "{Dpart2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{detD}", "maxValue": "{detD}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}]}]}], "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}]}