// Numbas version: finer_feedback_settings {"name": "Matrices: Determinants 04 (Properties)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Matrices: Determinants 04 (Properties)", "tags": [], "metadata": {"description": "

Useful properties of determinants that allow simplification.

\n
\n
\n
", "licence": "Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International"}, "statement": "

Determinants exhibit some properties that can usefully be thought of as \"Rules\":

\n

Rule 1:  If two rows (or two columns) of a determinant are interchanged then the value of the determinant is multiplied by ($−1$).

\n

Rule 2:  The determinant of a matrix $A$ and the determinant of its transpose $A^T$ are equal.

\n

Rule 3:  If two rows (or two columns) of a matrix $A$ are equal then it has zero determinant.

\n

Rule 4:  If the elements of one row (or one column) of a determinant are multiplied by $k$, then the determinant is also multiplied by $k$.

\n

Rule 5:  If we add (or subtract) a multiple of one row (or column) to another, the value of the determinant is unchanged.

\n

Rule 6:  The determinant of a lower triangular matrix, an upper triangular matrix or a diagonal matrix is the product of the elements on the leading diagonal.

", "advice": "

We are asked to give the determinants for various matrices without explicitly calculating them. We can do this by applying the \"rules\" given:

\n

 

\n

$\\large \\left| \\begin{array}{ccc} \\var{a22} & \\var{a11}  & \\var{a21}\\\\  \\var{a11} & -7 & \\var{a11}  \\\\\\var{a22}& \\var{a11} & \\var{a21} \\end{array} \\right| =0$

\n

Row $1$ and Row $3$ are equal so the determinant is $0$ (by Rule 3).

\n

 

\n

 

\n

 $\\large \\left| \\begin{array}{ccc} \\var{a11} & 0 & 0 & 0\\\\  \\var{a12} &  \\var{a11} & 0 & 0 \\\\ \\var{a22}& \\var{a21}& 1 & 0 \\\\ \\var{a12} & 0 & \\var{a21} & \\var{a22} \\end{array} \\right| =\\simplify{{a11}{a11}{a22}}$

\n

Calculating the determinant of matrices larger than  $3 \\times 3$  can be a laborious process. However, this matrix is triangular so its determinant is merely the product of the values in the leading diagonal (by Rule 6).

\n

 

\n

 

\n

If          $\\large \\left| \\begin{array}{ccc} \\var{a11} & \\var{a12}  \\\\ \\var{a21}& \\var{a22}  \\end{array} \\right| =\\var{detA1}$          then          $\\large \\left| \\begin{array}{ccc} \\var{a21} & \\var{a22}  \\\\ \\var{a11}& \\var{a12}  \\end{array} \\right| =\\var{detA2}$

\n

In this case, the second matrix has the same elements as the first but Row $1$ and Row $2$ have been interchanged. So the determinant of the second will be the same as the determinant of the first but  $\\times -1$ (by Rule 1).

\n

 

\n

 

\n

If     $\\left|\\begin{array}{ccc}\\var{B[0][0]} & \\var{B[0][1]} & \\var{B[0][2]}\\\\ \\var{B[1][0]} & \\var{B[1][1]} & \\var{B[1][2]}\\\\ \\var{B[2][0]} & \\var{B[2][1]}& \\var{B[2][2]}\\end{array}\\right|=\\var{detB}$     then     $\\left|\\begin{array}{ccc}\\var{B[0][0]} & \\var{B[1][0]}& \\var{B[2][0]}\\\\ \\var{B[0][1]} & \\var{B[1][1]}& \\var{B[2][1]}\\\\ \\var{B[0][2]} & \\var{B[1][2]}& \\var{B[2][2]}\\end{array}\\right|=\\var{detB}$

\n

You should, hopefully, be able to see that the second matrix is the transpose of the first. Hence their determinants are equal (by Rule 2).

\n

 

\n

 

", "rulesets": {}, "extensions": [], "variables": {"a11": {"name": "a11", "group": "A Matrices", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "a12": {"name": "a12", "group": "A Matrices", "definition": "random(-9..9 except a11)", "description": "", "templateType": "anything"}, "a21": {"name": "a21", "group": "A Matrices", "definition": "random(-9..9 except a11 except a12)", "description": "", "templateType": "anything"}, "a22": {"name": "a22", "group": "A Matrices", "definition": "random(-9..9 except a11 except a12 except a21)", "description": "", "templateType": "anything"}, "A1": {"name": "A1", "group": "A Matrices", "definition": "matrix([a11,a12],[a21,a22])", "description": "", "templateType": "anything"}, "A2": {"name": "A2", "group": "A Matrices", "definition": "matrix([a21,a22],[a11,a12])", "description": "", "templateType": "anything"}, "detA1": {"name": "detA1", "group": "A Matrices", "definition": "det(A1)", "description": "", "templateType": "anything"}, "detA2": {"name": "detA2", "group": "A Matrices", "definition": "det(A2)", "description": "", "templateType": "anything"}, "n1": {"name": "n1", "group": "B matrices", "definition": "3", "description": "", "templateType": "number"}, "m1": {"name": "m1", "group": "B matrices", "definition": "n1", "description": "", "templateType": "anything"}, "B": {"name": "B", "group": "B matrices", "definition": "transpose(matrix(repeat(repeat(random(-9..9),n1),m1)))", "description": "", "templateType": "anything"}, "detB": {"name": "detB", "group": "B matrices", "definition": "det(B)", "description": "", "templateType": "anything"}, "Bt": {"name": "Bt", "group": "B matrices", "definition": "transpose(B)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "A Matrices", "variables": ["a11", "a12", "a21", "a22", "A1", "A2", "detA1", "detA2"]}, {"name": "B matrices", "variables": ["n1", "m1", "B", "detB", "Bt"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

By using the properties of determinants (above), that is without calculating any determinants, answer the following:

\n

 

\n

 $\\large \\left| \\begin{array}{ccc} \\var{a22} & \\var{a11}  & \\var{a21}\\\\  \\var{a11} & -7 & \\var{a11}  \\\\\\var{a22}& \\var{a11} & \\var{a21} \\end{array} \\right| =$ [[0]]

\n

  

\n

 

\n

  $\\large \\left| \\begin{array}{ccc} \\var{a11} & 0 & 0 & 0\\\\  \\var{a12} &  \\var{a11} & 0 & 0 \\\\ \\var{a22}& \\var{a21}& 1 & 0 \\\\ \\var{a12} & 0 & \\var{a21} & \\var{a22} \\end{array} \\right| =$ [[1]]

\n

  

\n

 

\n

If          $\\large \\left| \\begin{array}{ccc} \\var{a11} & \\var{a12}  \\\\ \\var{a21}& \\var{a22}  \\end{array} \\right| =\\var{detA1}$          then          $\\large \\left| \\begin{array}{ccc} \\var{a21} & \\var{a22}  \\\\ \\var{a11}& \\var{a12}  \\end{array} \\right| =$ [[2]]

\n

 

\n

 

\n

If     $\\left|\\begin{array}{ccc}\\var{B[0][0]} & \\var{B[0][1]} & \\var{B[0][2]}\\\\ \\var{B[1][0]} & \\var{B[1][1]} & \\var{B[1][2]}\\\\ \\var{B[2][0]} & \\var{B[2][1]}& \\var{B[2][2]}\\end{array}\\right|=\\var{detB}$     then     $\\left|\\begin{array}{ccc}\\var{B[0][0]} & \\var{B[1][0]}& \\var{B[2][0]}\\\\ \\var{B[0][1]} & \\var{B[1][1]}& \\var{B[2][1]}\\\\ \\var{B[0][2]} & \\var{B[1][2]}& \\var{B[2][2]}\\end{array}\\right|=$ [[3]]

\n

 

\n

 

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0", "maxValue": "0", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{a11}{a11}{a22}", "maxValue": "{a11}{a11}{a22}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{detA2}", "maxValue": "{detA2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{detB}", "maxValue": "{detB}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}]}]}], "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}]}