// Numbas version: finer_feedback_settings {"name": "Integration by partial fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Integration by partial fractions", "tags": ["2 distinct linear factors", "Calculus", "Steps", "calculus", "compare coefficients", "identify coefficients", "integrals", "integration", "logarithms", "partial fractions", "steps", "two distinct linear factors"], "advice": "\n

Using partial fractions we have to find $A$ and $B$ such that:
\\[\\simplify[std]{{c}/((x +{a})*(x+{b})) = A/(x+{a})+B/(x+{b})}\\]
Multiplying both sides of the equation by $\\displaystyle \\simplify[std]{1/((x +{a})*(x+{b}))}$ we obtain:

\n

$\\simplify[std]{A*(x+{b})+B*(x+{a}) = {c}}\\Rightarrow \\simplify[std]{(A+B)*x+{b}A+{a}B={c}}$. 

\n

We now identify coefficients on both sides of this equation.

\n

Identifying coefficients:

\n

Constant term: $\\simplify[std]{{b}*A+{a}*B = {c}}$

\n

Coefficent $x$: $ \\simplify[std]{A + B = 0}$ which gives $A = -B$

\n

Hence we obtain $\\displaystyle \\simplify[std]{A = {c}/{b-a}}$ and $\\displaystyle \\simplify[std]{B={-c}/{b-a}}$

\n

Which gives: \\[\\simplify[std]{{c}/((x +{a})*(x+{b})) = ({c}/{b-a})*(1/(x+{a}) -1/(x+{b}))}\\]

\n

So \\[\\begin{eqnarray*} I &=& \\simplify[std]{Int({c}/((x +{a})*(x+{b})),x )}\\\\ &=& \\simplify[std]{({c}/{b-a})*(Int(1/(x+{a}),x) -Int(1/(x+{b}),x))}\\\\ &=& \\simplify[std]{({c}/{b-a})*(ln(x+{a})-ln(x+{b}))+C} \\end{eqnarray*}\\]

\n

Or equivalently:  $\\displaystyle I= \\simplify[std]{({c}/{b-a})*(ln((x+{a})/(x+{b})))+C}$

\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 1.0, "prompt": "\n

$I=\\;$[[0]]

\n

Input all numbers as fractions or integers and not decimals.

\n

Input the constant of integration as $C$.

\n

Click on Show steps for help if you need it. You will lose 1 mark if you do so.

\n ", "gaps": [{"notallowed": {"message": "

Input all numbers as fractions or integers and not decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.0001, "vsetrange": [11.0, 12.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "({c}/{b-a})*(ln(x+{a})-ln(x+{b}))+C", "type": "jme"}], "steps": [{"prompt": "\n \n \n

Use partial fractions in order to write:
\\[\\simplify[std]{{c}/((x +{a})*(x+{b})) = A/(x+{a})+B/(x+{b})}\\]

\n \n \n \n

for suitable integers or fractions $A$ and $B$.

\n \n \n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "extensions": [], "statement": "\n

Find the following integral.

\n

\\[I = \\simplify[std]{Int({c}/((x +{a})*(x+{b})),x )}\\]

\n

Input all numbers as fractions or integers and not decimals.

\n

Input the constant of integration as $C$.

\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "s1*random(1..9)", "name": "a"}, "c": {"definition": "if(c1=2*a,c1+1,c1)", "name": "c"}, "b": {"definition": "if(b1=a,b1+s3,b1)", "name": "b"}, "s3": {"definition": "random(1,-1)", "name": "s3"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b1": {"definition": "s2*random(1..9)", "name": "b1"}, "c1": {"definition": "random(2..9)", "name": "c1"}}, "metadata": {"notes": "\n \t\t

5/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Added decimal point as forbidden string.

\n \t\t

Note the checking range is chosen so that the arguments of the log terms are always positive - could have used abs - might be better?

\n \t\t

Improved display of Advice. Added alternative solution at end using log laws.

\n \t\t

Added information about Show steps, also introduced penalty of 1 mark.

\n \t\t

Added !noLeadingMinus to ruleset std for display purposes.

\n \t\t", "description": "

Find $\\displaystyle\\int \\frac{a}{(x+b)(x+c)}\\;dx,\\;b \\neq c $.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}