// Numbas version: finer_feedback_settings {"name": "Integration by partial fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Integration by partial fractions", "tags": ["2 distinct linear factors", "Calculus", "Steps", "calculus", "compare coefficients", "identify coefficients", "integrals", "integration", "logarithms", "partial fractions", "steps", "two distinct linear factors"], "advice": "\n
Using partial fractions we have to find $A$ and $B$ such that:
\\[\\simplify[std]{{c}/((x +{a})*(x+{b})) = A/(x+{a})+B/(x+{b})}\\]
Multiplying both sides of the equation by $\\displaystyle \\simplify[std]{1/((x +{a})*(x+{b}))}$ we obtain:
$\\simplify[std]{A*(x+{b})+B*(x+{a}) = {c}}\\Rightarrow \\simplify[std]{(A+B)*x+{b}A+{a}B={c}}$.
\nWe now identify coefficients on both sides of this equation.
\nIdentifying coefficients:
\nConstant term: $\\simplify[std]{{b}*A+{a}*B = {c}}$
\nCoefficent $x$: $ \\simplify[std]{A + B = 0}$ which gives $A = -B$
\nHence we obtain $\\displaystyle \\simplify[std]{A = {c}/{b-a}}$ and $\\displaystyle \\simplify[std]{B={-c}/{b-a}}$
\nWhich gives: \\[\\simplify[std]{{c}/((x +{a})*(x+{b})) = ({c}/{b-a})*(1/(x+{a}) -1/(x+{b}))}\\]
\nSo \\[\\begin{eqnarray*} I &=& \\simplify[std]{Int({c}/((x +{a})*(x+{b})),x )}\\\\ &=& \\simplify[std]{({c}/{b-a})*(Int(1/(x+{a}),x) -Int(1/(x+{b}),x))}\\\\ &=& \\simplify[std]{({c}/{b-a})*(ln(x+{a})-ln(x+{b}))+C} \\end{eqnarray*}\\]
\nOr equivalently: $\\displaystyle I= \\simplify[std]{({c}/{b-a})*(ln((x+{a})/(x+{b})))+C}$
\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 1.0, "prompt": "\n$I=\\;$[[0]]
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
\nClick on Show steps for help if you need it. You will lose 1 mark if you do so.
\n ", "gaps": [{"notallowed": {"message": "Input all numbers as fractions or integers and not decimals.
", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.0001, "vsetrange": [11.0, 12.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "({c}/{b-a})*(ln(x+{a})-ln(x+{b}))+C", "type": "jme"}], "steps": [{"prompt": "\n \n \nUse partial fractions in order to write:
\\[\\simplify[std]{{c}/((x +{a})*(x+{b})) = A/(x+{a})+B/(x+{b})}\\]
for suitable integers or fractions $A$ and $B$.
\n \n \n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "extensions": [], "statement": "\nFind the following integral.
\n\\[I = \\simplify[std]{Int({c}/((x +{a})*(x+{b})),x )}\\]
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "s1*random(1..9)", "name": "a"}, "c": {"definition": "if(c1=2*a,c1+1,c1)", "name": "c"}, "b": {"definition": "if(b1=a,b1+s3,b1)", "name": "b"}, "s3": {"definition": "random(1,-1)", "name": "s3"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b1": {"definition": "s2*random(1..9)", "name": "b1"}, "c1": {"definition": "random(2..9)", "name": "c1"}}, "metadata": {"notes": "\n \t\t5/08/2012:
\n \t\tAdded tags.
\n \t\tAdded description.
\n \t\tAdded decimal point as forbidden string.
\n \t\tNote the checking range is chosen so that the arguments of the log terms are always positive - could have used abs - might be better?
\n \t\tImproved display of Advice. Added alternative solution at end using log laws.
\n \t\tAdded information about Show steps, also introduced penalty of 1 mark.
\n \t\tAdded !noLeadingMinus to ruleset std for display purposes.
\n \t\t", "description": "Find $\\displaystyle\\int \\frac{a}{(x+b)(x+c)}\\;dx,\\;b \\neq c $.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}