// Numbas version: finer_feedback_settings {"name": "Identify the point lying on a parabola", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Identify the point lying on a parabola", "tags": [], "metadata": {"description": "
Students are given a parabola equation and 4 points. They need to determine which point lies on the parabola.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Which of the following points lies on the parabola $y = \\var{a} x^2 - \\var{b}x - \\var{c}$?
", "advice": "The best way to approach this is to substitute the points into the equation and see which one works.
\nYou will observe that in all four choices, $x = \\var{x}$.
\nIf we substitute $x=\\var{x}$ into the equation $y = \\var{a} x^2 - \\var{b} x -\\var{c}$ we find that $y = \\var{a*x*x-b*x-c})$.
\nSo the point that lieson the parabola is $(\\var{x},\\var{a*x*x-b*x-c})$.
\n", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-5,-4,-3,-2,2,3,4,5)", "description": "parabola constant
", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "parabola constant
", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "parabola constant
", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "random(-2,-1,0,1,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "x"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["$(\\var{x},\\var{(a*x*x)-(b*x)-c})$", "$(\\var{x},\\var{a*x*x+b*x+c})$", "$(\\var{x},\\var{-a*x*x+b*x+c})$", "$(\\var{x},\\var{-a*x*x-b*x-c})$"], "matrix": ["1", 0, 0, 0], "distractors": ["", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}]}], "contributors": [{"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}