// Numbas version: finer_feedback_settings {"name": "Integration: By Substitution 3a ii (Negative and Fractional Powers)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Integration: By Substitution 3a ii (Negative and Fractional Powers)", "tags": [], "metadata": {"description": "
Calculating the integral of a function of the form $\\frac{nx^{n-1}}{x^n+a}$ using integration by substitution. $n$ is a positive or negative fraction.
", "licence": "None specified"}, "statement": "Calculate \\[ \\simplify[fractionNumbers]{int(({n}x^{n/m-1})/({m}(x^{n/m}+{a})),x)}\\]
", "advice": "Since this integral is of the form \\[ \\int g'(x)f(g(x))\\,dx,\\] we can use the method of substitution to calculate the solution.
\nFirstly, we must make a change of variables from $x$ to $u$, where $u$ is equal to the 'inner' function $g(x)$.
\nSo, for \\[\\simplify[fractionNumbers]{int(({n}x^{n/m-1})/({m}(x^{n/m}+{a})),x)}\\]
\nlet $\\color{red}{u=\\simplify[fractionNumbers]{x^{n/m}+{a}}}.$
\nNow, we need to calculate the differential, $du$, where \\[ du = \\left(\\frac{du}{dx}\\right)dx. \\]
\nDifferentiating $u$ with respect to $x$:
\n\\[ \\frac{du}{dx}= \\simplify[fractionNumbers]{{n/m}x^{n/m-1}}.\\]
\nTherefore, \\[ \\color{blue}{du = \\simplify[fractionNumbers]{{n/m}x^{n/m-1}}\\, dx}.\\]
\nWe can now rewrite the original integral in terms of $u$:
\n\\[ \\int \\frac{\\color{blue}{\\simplify[fractionNumbers]{{n}x^{n/m-1}}}}{\\color{blue}{\\var{m}}(\\color{red}{\\simplify[fractionNumbers]{x^{n}+{a}}})}\\color{blue}{\\text{d}x} = \\int \\frac{1}{\\color{red}{u}}\\color{blue}{\\text{d}u}.\\]
\n(Note: It is important to see that both the function we are integrating, and the variable we are integrating with respect to, has changed.)
\n\\[ \\simplify[fractionNumbers]{int(1/u,u) = ln(abs(u)) + c}.\\]
\nFinally, we must rewrite our solution back in terms of the original variable $x$:
\n\\[ \\simplify[fractionNumbers]{ln(abs(u)) + c = ln(abs(x^{n/m}+{a})) + c}.\\]
\n", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(n/m)>1 and gcd(n,m)=1", "maxRuns": "100"}, "ungrouped_variables": ["a", "n", "m"], "variable_groups": [{"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "alternatives": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "ln(x^({n/m})+{a})+c", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "answer": "ln(abs(x^({n/m})+{a}))+c", "answerSimplification": "fractionNumbers, basic, unitFactor", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.01", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}]}], "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}