// Numbas version: finer_feedback_settings {"name": "copy of Gaussian elimination calculator", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "copy of Gaussian elimination calculator", "tags": [], "metadata": {"description": "

This allows the student to input a linear system in augmented matrix form (max rows 5, but any number of variables). Then the student can decide to swap some rows, or multiply some rows, or add multiples of one row to other rows. The student only has to input what operation should be performed, and this is automatically applied to the system. This question has no marks and no feedback as it's just meant as a \"calculator\".

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Type in a linear system you want to solve, and then say which row operations you would like to do. These will then be calculated for you. You can choose the size of your system, any number of variables, but only up to \\(5\\) rows.

\n

As there are no \"correct answers\", nothing will be marked, but you will have to submit each part in order to continue. If you click on \"reveal answers\", you will see all steps you have gone through listed. You can use the navigation at the top to go back to previous parts if you want to take a different route.

", "advice": "

You can see all your steps above.

", "rulesets": {}, "extensions": [], "variables": {"matrix_A": {"name": "matrix_A", "group": "the system", "definition": "matrix([0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0])", "description": "

Matrix that will take the values of what the students enter for their linear system. This is just the side on the left: augmentation vector is separate.

", "templateType": "anything"}, "augmentation_b": {"name": "augmentation_b", "group": "the system", "definition": "matrix([0],[0],[0],[0],[0])", "description": "

Augmentation vector for the linear system. It will take on the values students enter.

", "templateType": "anything"}, "row1multiplier": {"name": "row1multiplier", "group": "Calculating mutiples of rows", "definition": "1", "description": "

number to multiply row 1 by.

", "templateType": "anything"}, "row2multiplier": {"name": "row2multiplier", "group": "Calculating mutiples of rows", "definition": "1", "description": "", "templateType": "anything"}, "row3multiplier": {"name": "row3multiplier", "group": "Calculating mutiples of rows", "definition": "1", "description": "", "templateType": "anything"}, "row4multiplier": {"name": "row4multiplier", "group": "Calculating mutiples of rows", "definition": "1", "description": "", "templateType": "anything"}, "row5multiplier": {"name": "row5multiplier", "group": "Calculating mutiples of rows", "definition": "1", "description": "", "templateType": "anything"}, "first_row_being_changed": {"name": "first_row_being_changed", "group": "Calculating row additions", "definition": "2", "description": "", "templateType": "anything"}, "second_row_being_changed": {"name": "second_row_being_changed", "group": "Calculating row additions", "definition": "3", "description": "", "templateType": "anything"}, "third_row_being_changed": {"name": "third_row_being_changed", "group": "Calculating row additions", "definition": "4", "description": "", "templateType": "anything"}, "fourth_row_being_changed": {"name": "fourth_row_being_changed", "group": "Calculating row additions", "definition": "5", "description": "", "templateType": "anything"}, "lambda1": {"name": "lambda1", "group": "Calculating row additions", "definition": "0", "description": "", "templateType": "anything"}, "lambda2": {"name": "lambda2", "group": "Calculating row additions", "definition": "0", "description": "", "templateType": "anything"}, "lambda3": {"name": "lambda3", "group": "Calculating row additions", "definition": "0", "description": "", "templateType": "anything"}, "lambda4": {"name": "lambda4", "group": "Calculating row additions", "definition": "0", "description": "", "templateType": "anything"}, "remultiplied_A": {"name": "remultiplied_A", "group": "Calculating mutiples of rows", "definition": "switch(numrows(matrix_A)=1,matrix(if(isnan(row1multiplier),1,row1multiplier)*matrix_A[0]),\n numrows(matrix_A)=2,matrix(if(isnan(row1multiplier),1,row1multiplier)*matrix_A[0],if(isnan(row2multiplier),1,row2multiplier)*matrix_A[1]),\n numrows(matrix_A)=3,matrix(if(isnan(row1multiplier),1,row1multiplier)*matrix_A[0],if(isnan(row2multiplier),1,row2multiplier)*matrix_A[1],if(isnan(row3multiplier),1,row3multiplier)*matrix_A[2]),\n numrows(matrix_A)=4,matrix(if(isnan(row1multiplier),1,row1multiplier)*matrix_A[0],if(isnan(row2multiplier),1,row2multiplier)*matrix_A[1],if(isnan(row3multiplier),1,row3multiplier)*matrix_A[2],if(isnan(row4multiplier),1,row4multiplier)*matrix_A[3]),\n numrows(matrix_A)=5,matrix(if(isnan(row1multiplier),1,row1multiplier)*matrix_A[0],if(isnan(row2multiplier),1,row2multiplier)*matrix_A[1],if(isnan(row3multiplier),1,row3multiplier)*matrix_A[2],if(isnan(row4multiplier),1,row4multiplier)*matrix_A[3],if(isnan(row5multiplier),1,row5multiplier)*matrix_A[4]),\n matrix(if(isnan(row1multiplier),1,row1multiplier)*matrix_A[0],if(isnan(row2multiplier),1,row2multiplier)*matrix_A[1],if(isnan(row3multiplier),1,row3multiplier)*matrix_A[2],if(isnan(row4multiplier),1,row4multiplier)*matrix_A[3],if(isnan(row5multiplier),1,row5multiplier)*matrix_A[4]))", "description": "

changed matrix A after multiplying rows. It takes into account possible different sizes of the matrix. Up to 5 rows.

", "templateType": "anything"}, "remultiplied_b": {"name": "remultiplied_b", "group": "Calculating mutiples of rows", "definition": "switch(numrows(augmentation_b)=1,matrix(if(isnan(row1multiplier),1,row1multiplier)*augmentation_b[0]),\n numrows(augmentation_b)=2,matrix(if(isnan(row1multiplier),1,row1multiplier)*augmentation_b[0],if(isnan(row2multiplier),1,row2multiplier)*augmentation_b[1]),\n numrows(augmentation_b)=3,matrix(if(isnan(row1multiplier),1,row1multiplier)*augmentation_b[0],if(isnan(row2multiplier),1,row2multiplier)*augmentation_b[1],if(isnan(row3multiplier),1,row3multiplier)*augmentation_b[2]),\n numrows(augmentation_b)=4,matrix(if(isnan(row1multiplier),1,row1multiplier)*augmentation_b[0],if(isnan(row2multiplier),1,row2multiplier)*augmentation_b[1],if(isnan(row3multiplier),1,row3multiplier)*augmentation_b[2],if(isnan(row4multiplier),1,row4multiplier)*augmentation_b[3]),\n numrows(augmentation_b)=5,matrix(if(isnan(row1multiplier),1,row1multiplier)*augmentation_b[0],if(isnan(row2multiplier),1,row2multiplier)*augmentation_b[1],if(isnan(row3multiplier),1,row3multiplier)*augmentation_b[2],if(isnan(row4multiplier),1,row4multiplier)*augmentation_b[3],if(isnan(row5multiplier),1,row5multiplier)*augmentation_b[4]),\n matrix(if(isnan(row1multiplier),1,row1multiplier)*augmentation_b[0],if(isnan(row2multiplier),1,row2multiplier)*augmentation_b[1],if(isnan(row3multiplier),1,row3multiplier)*augmentation_b[2],if(isnan(row4multiplier),1,row4multiplier)*augmentation_b[3],if(isnan(row5multiplier),1,row5multiplier)*augmentation_b[4]))", "description": "

changed augmentation b after multiplying rows. It takes into account possible different sizes of the matrix. Up to 5 rows.

", "templateType": "anything"}, "readded_A_row1": {"name": "readded_A_row1", "group": "Calculating row additions", "definition": "switch(row_being_added=1,adding_step[0],first_row_being_changed=1,adding_step[1],second_row_being_changed=1,adding_step[2],third_row_being_changed=1,adding_step[3],fourth_row_being_changed=1,adding_step[4],matrix_A[0])", "description": "", "templateType": "anything"}, "adding_step": {"name": "adding_step", "group": "Calculating row additions", "definition": "matrix(matrix_A[row_being_added-1],matrix_A[first_row_being_changed-1]+lambda1*matrix_A[row_being_added-1],matrix_A[second_row_being_changed-1]+lambda2*matrix_A[row_being_added-1],matrix_A[third_row_being_changed-1]+lambda3*matrix_A[row_being_added-1],matrix_A[fourth_row_being_changed-1]+lambda4*matrix_A[row_being_added-1])", "description": "

recalculating the rows of the matrix, but they are now potentially in the wrong order.

", "templateType": "anything"}, "row_being_added": {"name": "row_being_added", "group": "Calculating row additions", "definition": "1", "description": "", "templateType": "anything"}, "readded_A_row2": {"name": "readded_A_row2", "group": "Calculating row additions", "definition": "switch(row_being_added=2,adding_step[0],first_row_being_changed=2,adding_step[1],second_row_being_changed=2,adding_step[2],third_row_being_changed=2,adding_step[3],fourth_row_being_changed=2,adding_step[4],matrix_A[1])", "description": "", "templateType": "anything"}, "readded_A_row3": {"name": "readded_A_row3", "group": "Calculating row additions", "definition": "switch(row_being_added=3,adding_step[0],first_row_being_changed=3,adding_step[1],second_row_being_changed=3,adding_step[2],third_row_being_changed=3,adding_step[3],fourth_row_being_changed=3,adding_step[4],matrix_A[2])", "description": "", "templateType": "anything"}, "readded_A_row4": {"name": "readded_A_row4", "group": "Calculating row additions", "definition": "switch(row_being_added=4,adding_step[0],first_row_being_changed=4,adding_step[1],second_row_being_changed=4,adding_step[2],third_row_being_changed=4,adding_step[3],fourth_row_being_changed=4,adding_step[4],matrix_A[3])", "description": "", "templateType": "anything"}, "readded_A_row5": {"name": "readded_A_row5", "group": "Calculating row additions", "definition": "switch(row_being_added=5,adding_step[0],first_row_being_changed=5,adding_step[1],second_row_being_changed=5,adding_step[2],third_row_being_changed=5,adding_step[3],fourth_row_being_changed=5,adding_step[4],matrix_A[4])", "description": "", "templateType": "anything"}, "readded_A": {"name": "readded_A", "group": "Calculating row additions", "definition": "switch(numrows(matrix_A)=1,matrix(readded_A_row1),\n numrows(matrix_A)=2,matrix(readded_A_row1,readded_A_row2),\n numrows(matrix_A)=3,matrix(readded_A_row1,readded_A_row2,readded_A_row3),\n numrows(matrix_A)=4, matrix(readded_A_row1,readded_A_row2,readded_A_row3,readded_A_row4),\n numrows(matrix_A)=5, matrix(readded_A_row1,readded_A_row2,readded_A_row3,readded_A_row4,readded_A_row5),\n matrix(readded_A_row1,readded_A_row2,readded_A_row3,readded_A_row4,readded_A_row5))", "description": "

Putting together the new rows of matrix A in the right order after some row additions. Takes into account different sizes.

", "templateType": "anything"}, "readded_b": {"name": "readded_b", "group": "Calculating row additions", "definition": "switch(numrows(augmentation_b)=1, matrix(readded_b_row1),\n numrows(augmentation_b)=2,matrix(readded_b_row1,readded_b_row2),\n numrows(augmentation_b)=3, matrix(readded_b_row1,readded_b_row2,readded_b_row3),\n numrows(augmentation_b)=4, matrix(readded_b_row1,readded_b_row2,readded_b_row3,readded_b_row4),\n numrows(augmentation_b)=5,matrix(readded_b_row1,readded_b_row2,readded_b_row3,readded_b_row4,readded_b_row5),\n matrix(readded_b_row1,readded_b_row2,readded_b_row3,readded_b_row4,readded_b_row5))", "description": "

Putting together the new rows of augmentation b in the right order after some row additions. Takes into account different sizes.

", "templateType": "anything"}, "adding_step_b": {"name": "adding_step_b", "group": "Calculating row additions", "definition": "matrix(augmentation_b[row_being_added-1],augmentation_b[first_row_being_changed-1]+lambda1*augmentation_b[row_being_added-1],augmentation_b[second_row_being_changed-1]+lambda2*augmentation_b[row_being_added-1],augmentation_b[third_row_being_changed-1]+lambda3*augmentation_b[row_being_added-1],augmentation_b[fourth_row_being_changed-1]+lambda4*augmentation_b[row_being_added-1])", "description": "", "templateType": "anything"}, "readded_b_row1": {"name": "readded_b_row1", "group": "Calculating row additions", "definition": "switch(row_being_added=1,adding_step_b[0],first_row_being_changed=1,adding_step_b[1],second_row_being_changed=1,adding_step_b[2],third_row_being_changed=1,adding_step_b[3],fourth_row_being_changed=1,adding_step_b[4],augmentation_b[0])", "description": "", "templateType": "anything"}, "readded_b_row2": {"name": "readded_b_row2", "group": "Calculating row additions", "definition": "switch(row_being_added=2,adding_step_b[0],first_row_being_changed=2,adding_step_b[1],second_row_being_changed=2,adding_step_b[2],third_row_being_changed=2,adding_step_b[3],fourth_row_being_changed=2,adding_step_b[4],augmentation_b[1])", "description": "", "templateType": "anything"}, "readded_b_row3": {"name": "readded_b_row3", "group": "Calculating row additions", "definition": "switch(row_being_added=3,adding_step_b[0],first_row_being_changed=3,adding_step_b[1],second_row_being_changed=3,adding_step_b[2],third_row_being_changed=3,adding_step_b[3],fourth_row_being_changed=3,adding_step_b[4],augmentation_b[2])", "description": "", "templateType": "anything"}, "readded_b_row4": {"name": "readded_b_row4", "group": "Calculating row additions", "definition": "switch(row_being_added=4,adding_step_b[0],first_row_being_changed=4,adding_step_b[1],second_row_being_changed=4,adding_step_b[2],third_row_being_changed=4,adding_step_b[3],fourth_row_being_changed=4,adding_step_b[4],augmentation_b[3])", "description": "", "templateType": "anything"}, "readded_b_row5": {"name": "readded_b_row5", "group": "Calculating row additions", "definition": "switch(row_being_added=5,adding_step_b[0],first_row_being_changed=5,adding_step_b[1],second_row_being_changed=5,adding_step_b[2],third_row_being_changed=5,adding_step_b[3],fourth_row_being_changed=5,adding_step_b[4],augmentation_b[4])", "description": "", "templateType": "anything"}, "new1strow": {"name": "new1strow", "group": "Switching rows", "definition": "1", "description": "

For switching rows.

", "templateType": "anything"}, "new2ndrow": {"name": "new2ndrow", "group": "Switching rows", "definition": "2", "description": "", "templateType": "anything"}, "new3rdrow": {"name": "new3rdrow", "group": "Switching rows", "definition": "3", "description": "", "templateType": "anything"}, "new5throw": {"name": "new5throw", "group": "Switching rows", "definition": "5", "description": "", "templateType": "anything"}, "new4throw": {"name": "new4throw", "group": "Switching rows", "definition": "4", "description": "", "templateType": "anything"}, "swapped_rows_A": {"name": "swapped_rows_A", "group": "Switching rows", "definition": "switch(numrows(matrix_A)=1, matrix(matrix_A[0]),\n numrows(matrix_A)=2,matrix(matrix_A[if(isnan(new1strow),1,new1strow)-1],matrix_A[if(isnan(new2ndrow),2,new2ndrow)-1]),\n numrows(matrix_A)=3,matrix(matrix_A[if(isnan(new1strow),1,new1strow)-1],matrix_A[if(isnan(new2ndrow),2,new2ndrow)-1],matrix_A[if(isnan(new3rdrow),3,new3rdrow)-1]),\n numrows(matrix_A)=4, matrix(matrix_A[if(isnan(new1strow),1,new1strow)-1],matrix_A[if(isnan(new2ndrow),2,new2ndrow)-1],matrix_A[if(isnan(new3rdrow),3,new3rdrow)-1],matrix_A[if(isnan(new4throw),4,new4throw)-1]),\n numrows(matrix_A)=5,matrix(matrix_A[if(isnan(new1strow),1,new1strow)-1],matrix_A[if(isnan(new2ndrow),2,new2ndrow)-1],matrix_A[if(isnan(new3rdrow),3,new3rdrow)-1],matrix_A[if(isnan(new4throw),4,new4throw)-1],matrix_A[if(isnan(new5throw),5,new5throw)-1]),\n matrix(matrix_A[if(isnan(new1strow),1,new1strow)-1],matrix_A[if(isnan(new2ndrow),2,new2ndrow)-1],matrix_A[if(isnan(new3rdrow),3,new3rdrow)-1],matrix_A[if(isnan(new4throw),4,new4throw)-1],matrix_A[if(isnan(new5throw),5,new5throw)-1]))", "description": "

New matrix after swapping rows around.

", "templateType": "anything"}, "swapped_rows_b": {"name": "swapped_rows_b", "group": "Switching rows", "definition": "switch(numrows(augmentation_b)=1, matrix(augmentation_b[0]),\n numrows(augmentation_b)=2,matrix(augmentation_b[if(isnan(new1strow),1,new1strow)-1],augmentation_b[if(isnan(new2ndrow),2,new2ndrow)-1]),\n numrows(augmentation_b)=3,matrix(augmentation_b[if(isnan(new1strow),1,new1strow)-1],augmentation_b[if(isnan(new2ndrow),2,new2ndrow)-1],augmentation_b[if(isnan(new3rdrow),3,new3rdrow)-1]),\n numrows(augmentation_b)=4, matrix(augmentation_b[if(isnan(new1strow),1,new1strow)-1],augmentation_b[if(isnan(new2ndrow),2,new2ndrow)-1],augmentation_b[if(isnan(new3rdrow),3,new3rdrow)-1],augmentation_b[if(isnan(new4throw),4,new4throw)-1]),\n numrows(augmentation_b)=5,matrix(augmentation_b[if(isnan(new1strow),1,new1strow)-1],augmentation_b[if(isnan(new2ndrow),2,new2ndrow)-1],augmentation_b[if(isnan(new3rdrow),3,new3rdrow)-1],augmentation_b[if(isnan(new4throw),4,new4throw)-1],augmentation_b[if(isnan(new5throw),5,new5throw)-1]),\n matrix(augmentation_b[if(isnan(new1strow),1,new1strow)-1],augmentation_b[if(isnan(new2ndrow),2,new2ndrow)-1],augmentation_b[if(isnan(new3rdrow),3,new3rdrow)-1],augmentation_b[if(isnan(new4throw),4,new4throw)-1],augmentation_b[if(isnan(new5throw),5,new5throw)-1]))", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "24/5", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a"], "variable_groups": [{"name": "the system", "variables": ["matrix_A", "augmentation_b"]}, {"name": "Calculating mutiples of rows", "variables": ["row1multiplier", "row2multiplier", "row3multiplier", "row4multiplier", "row5multiplier", "remultiplied_A", "remultiplied_b"]}, {"name": "Calculating row additions", "variables": ["row_being_added", "first_row_being_changed", "second_row_being_changed", "third_row_being_changed", "fourth_row_being_changed", "lambda1", "lambda2", "lambda3", "lambda4", "adding_step", "readded_A_row1", "readded_A_row2", "readded_A_row3", "readded_A_row4", "readded_A_row5", "readded_A", "adding_step_b", "readded_b_row1", "readded_b_row2", "readded_b_row3", "readded_b_row4", "readded_b_row5", "readded_b"]}, {"name": "Switching rows", "variables": ["new1strow", "new2ndrow", "new3rdrow", "new4throw", "new5throw", "swapped_rows_A", "swapped_rows_b"]}], "functions": {}, "preamble": {"js": "", "css": ".matrix-input .left-bracket, .matrix-input .right-bracket {\n display: none !important;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Enter system", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "mismatched_row_numbers (Compare number of rows of the two gaps):\n assert(len(studentAnswer[0])=len(studentAnswer[1]),\n warn(\"The number of rows of matrix and augmentation do not match.\");\n fail(\"The number of rows of matrix and augmentation do not match.\");\n true\n )\n\nmark:\n apply(mismatched_row_numbers);\n assert(all_valid , fail(translate(\"question.can not submit\")));\n apply(answers);\n apply(gap_feedback)\n", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "Multiply some rows", "rawLabel": "", "otherPart": 3, "variableReplacements": [{"variable": "augmentation_b", "definition": "interpreted_answer[1]"}, {"variable": "matrix_A", "definition": "interpreted_answer[0]"}], "availabilityCondition": "answered", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}, {"label": "Add multiples of some row to other rows", "rawLabel": "", "otherPart": 1, "variableReplacements": [{"variable": "augmentation_b", "definition": "interpreted_answer[1]"}, {"variable": "matrix_A", "definition": "interpreted_answer[0]"}], "availabilityCondition": "answered", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}, {"label": "Swap some rows", "rawLabel": "", "otherPart": 5, "variableReplacements": [{"variable": "augmentation_b", "definition": "interpreted_answer[1]"}, {"variable": "matrix_A", "definition": "interpreted_answer[0]"}], "availabilityCondition": "answered", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}, {"label": "Finish", "rawLabel": "", "otherPart": 7, "variableReplacements": [{"variable": "augmentation_b", "definition": "interpreted_answer[1]"}, {"variable": "matrix_A", "definition": "interpreted_answer[0]"}], "availabilityCondition": "answered", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Enter your linear system. You can any number of variables (i.e. columns in the left-hand-side matrix), but only up to 5 rows. Make sure that your augmentation vector on the right-hand-side has the same number of rows as your matrix on the left-hand-side.

\n

\\(\\left( \\begin{matrix}\\phantom{,}\\\\ \\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\end{matrix}\\right.\\)[[0]] \\(\\left. \\begin{matrix}\\phantom{,}\\\\ \\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\end{matrix}\\middle|\\begin{matrix}\\phantom{,}\\\\ \\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\end{matrix}\\right.\\) [[1]]\\(\\left. \\begin{matrix}\\phantom{,}\\\\ \\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\\\\\phantom{,}\\end{matrix}\\right)\\)

", "gaps": [{"type": "matrix", "useCustomName": true, "customName": "Matrix A", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "mark:\n apply(any_empty);\n apply(any_invalid);\n assert(settings[\"precisionType\"]=\"none\" and not settings[\"allowFractions\"], apply(all_same_precision));\n correct(\"Your matrix input is valid.\")\n", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix_A", "correctAnswerFractions": false, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": "100", "markPerCell": false, "allowFractions": true, "minColumns": 1, "maxColumns": "0", "minRows": 1, "maxRows": "5"}, {"type": "matrix", "useCustomName": true, "customName": "augmentation b", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "mark:\n apply(any_empty);\n apply(any_invalid);\n assert(settings[\"precisionType\"]=\"none\" and not settings[\"allowFractions\"], apply(all_same_precision));\n correct(\"Your vector input is valid.\")\n", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "augmentation_b", "correctAnswerFractions": false, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": "0", "markPerCell": false, "allowFractions": true, "minColumns": 1, "maxColumns": "1", "minRows": 1, "maxRows": "5"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Add multiples of some row to other rows", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "Calculate the additions", "rawLabel": "", "otherPart": 2, "variableReplacements": [{"variable": "lambda1", "definition": "interpreted_answer[0]"}, {"variable": "lambda2", "definition": "interpreted_answer[3]"}, {"variable": "lambda3", "definition": "interpreted_answer[5]"}, {"variable": "lambda4", "definition": "interpreted_answer[7]"}, {"variable": "row_being_added", "definition": "interpreted_answer[1]"}, {"variable": "first_row_being_changed", "definition": "interpreted_answer[2]"}, {"variable": "second_row_being_changed", "definition": "interpreted_answer[4]"}, {"variable": "third_row_being_changed", "definition": "interpreted_answer[6]"}, {"variable": "fourth_row_being_changed", "definition": "interpreted_answer[8]"}], "availabilityCondition": "answered", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Your system now looks like this:

\n

\\[\\left( \\var[fractionNumbers,bareMatrices]{matrix_A} \\middle| \\var[fractionNumbers,bareMatrices]{augmentation_b}\\right)\\]

\n

Enter what you would like to calculate. You can choose one row to add to one or more of the other rows. The entries in front of \"times\" can be fractions. You can leave blank any entries you don't need.

\n

You matrix only has one row, so there is no valid \"add a multiple of one row to another row\" operation.

\n

Add [[0]] times row [[1]] to row [[2]].
Add [[3]] times row [[1]] to row [[4]].
Add [[5]] times row [[1]] to row [[6]].
Add [[7]] times row [[1]] to row [[8]].

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "lambda1", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "lambda1", "maxValue": "lambda1", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "row being added", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "row_being_added", "maxValue": "row_being_added", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "first row being changed", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "first_row_being_changed", "maxValue": "first_row_being_changed", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "lambda2", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "lambda2", "maxValue": "lambda2", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "second row being changed", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "second_row_being_changed", "maxValue": "second_row_being_changed", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "lambda3", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "lambda3", "maxValue": "lambda3", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "third row being changed", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "third_row_being_changed", "maxValue": "third_row_being_changed", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "lambda4", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "lambda4", "maxValue": "lambda4", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "fourth row being changed", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "fourth_row_being_changed", "maxValue": "fourth_row_being_changed", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "information", "useCustomName": true, "customName": "Calculate the additions", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "Multiply some rows", "rawLabel": "", "otherPart": 3, "variableReplacements": [{"variable": "augmentation_b", "definition": "readded_b"}, {"variable": "matrix_A", "definition": "readded_A"}], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}, {"label": "Add multiples of some row to other rows", "rawLabel": "", "otherPart": 1, "variableReplacements": [{"variable": "augmentation_b", "definition": "readded_b"}, {"variable": "matrix_A", "definition": "readded_A"}], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}, {"label": "Swap some rows", "rawLabel": "", "otherPart": 5, "variableReplacements": [{"variable": "augmentation_b", "definition": "readded_b"}, {"variable": "matrix_A", "definition": "readded_A"}], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}, {"label": "Finish", "rawLabel": "", "otherPart": 7, "variableReplacements": [{"variable": "augmentation_b", "definition": "readded_b"}, {"variable": "matrix_A", "definition": "readded_A"}], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

You have gone from

\n

\\[ \\left( \\var[fractionNumbers,bareMatrices]{matrix_A} \\middle| \\var[fractionNumbers,bareMatrices]{augmentation_b}\\right)\\qquad \\text{to} \\qquad \\left( \\var[fractionNumbers,bareMatrices]{readded_A} \\middle| \\var[fractionNumbers,bareMatrices]{readded_b}\\right)\\]

"}, {"type": "gapfill", "useCustomName": true, "customName": "Multiply some rows", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "Calculate the multiplications", "rawLabel": "", "otherPart": 4, "variableReplacements": [{"variable": "row1multiplier", "definition": "interpreted_answer[0]"}, {"variable": "row2multiplier", "definition": "interpreted_answer[1]"}, {"variable": "row3multiplier", "definition": "interpreted_answer[2]"}, {"variable": "row4multiplier", "definition": "interpreted_answer[3]"}, {"variable": "row5multiplier", "definition": "interpreted_answer[4]"}], "availabilityCondition": "answered", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Your system now looks like this:

\n

\\[ \\left( \\var[fractionNumbers,bareMatrices]{matrix_A} \\middle| \\var[fractionNumbers,bareMatrices]{augmentation_b}\\right)\\]

\n

Enter what you would like to calculate.  You can enter fractions if you want. You can leave blank any entries you don't need (if you want that row to stay as it is).

\n

[[0]] times row 1.
[[1]] times row 2.
[[2]] times row 3.
[[3]] times row 4.
[[4]] times row 5.

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "row1multiplier", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "row1multiplier", "maxValue": "row1multiplier", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "row2multiplier", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "row2multiplier", "maxValue": "row2multiplier", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "row3multiplier", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "row3multiplier", "maxValue": "row3multiplier", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "row4multiplier", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "row4multiplier", "maxValue": "row4multiplier", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "row5multiplier", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "row5multiplier", "maxValue": "row5multiplier", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "information", "useCustomName": true, "customName": "Calculate the multiplications", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "Multiply some rows", "rawLabel": "", "otherPart": 3, "variableReplacements": [{"variable": "augmentation_b", "definition": "remultiplied_b"}, {"variable": "matrix_A", "definition": "remultiplied_A"}], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}, {"label": "Add multiples of some row to other rows", "rawLabel": "", "otherPart": 1, "variableReplacements": [{"variable": "augmentation_b", "definition": "remultiplied_b"}, {"variable": "matrix_A", "definition": "remultiplied_A"}], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}, {"label": "Swap some rows", "rawLabel": "", "otherPart": 5, "variableReplacements": [{"variable": "augmentation_b", "definition": "remultiplied_b"}, {"variable": "matrix_A", "definition": "remultiplied_A"}], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}, {"label": "Finish", "rawLabel": "", "otherPart": 7, "variableReplacements": [{"variable": "augmentation_b", "definition": "remultiplied_b"}, {"variable": "matrix_A", "definition": "remultiplied_A"}], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

You have gone from

\n

\\[ \\left( \\var[fractionNumbers,bareMatrices]{matrix_A} \\middle| \\var[fractionNumbers,bareMatrices]{augmentation_b}\\right)\\qquad \\text{to}  \\qquad\\left( \\var[fractionNumbers,bareMatrices]{remultiplied_A} \\middle| \\var[fractionNumbers,bareMatrices]{remultiplied_b}\\right)\\]

"}, {"type": "gapfill", "useCustomName": true, "customName": "Swap some rows", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "Implement the swaps", "rawLabel": "", "otherPart": 6, "variableReplacements": [{"variable": "new1strow", "definition": "interpreted_answer[0]"}, {"variable": "new2ndrow", "definition": "interpreted_answer[1]"}, {"variable": "new3rdrow", "definition": "interpreted_answer[2]"}, {"variable": "new4throw", "definition": "interpreted_answer[3]"}, {"variable": "new5throw", "definition": "interpreted_answer[4]"}], "availabilityCondition": "answered", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Your system now looks like this:

\n

\\[ \\left( \\var[fractionNumbers,bareMatrices]{matrix_A} \\middle| \\var[fractionNumbers,bareMatrices]{augmentation_b}\\right)\\]

\n

Enter which rows you want to swap. So as not to lose information, make sure you don't enter any row number twice!

\n

You only have one row, so you can't swap any rows.

\n

Old row [[0]] becomes new row 1.
Old row [[1]] becomes new row 2.
Old row [[2]] becomes new row 3.
Old row [[3]] becomes new row 4.
Old row [[4]] becomes new row 5.

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "new1strow", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "new1strow", "maxValue": "new1strow", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "new2ndrow", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "new2ndrow", "maxValue": "new2ndrow", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "new3rdrow", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "new3rdrow", "maxValue": "new3rdrow", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "new4throw", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "new4throw", "maxValue": "new4throw", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "new5throw", "marks": "0", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "new4throw", "maxValue": "new4throw", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "information", "useCustomName": true, "customName": "Implement the swaps", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "Add multiples of some row to other rows", "rawLabel": "", "otherPart": 1, "variableReplacements": [{"variable": "matrix_A", "definition": "swapped_rows_A"}, {"variable": "augmentation_b", "definition": "swapped_rows_b"}], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}, {"label": "Multiply some rows", "rawLabel": "", "otherPart": 3, "variableReplacements": [{"variable": "matrix_A", "definition": "swapped_rows_A"}, {"variable": "augmentation_b", "definition": "swapped_rows_b"}], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}, {"label": "Swap some rows", "rawLabel": "", "otherPart": 5, "variableReplacements": [{"variable": "matrix_A", "definition": "swapped_rows_A"}, {"variable": "augmentation_b", "definition": "swapped_rows_b"}], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}, {"label": "Finish", "rawLabel": "", "otherPart": 7, "variableReplacements": [{"variable": "matrix_A", "definition": "swapped_rows_A"}, {"variable": "augmentation_b", "definition": "swapped_rows_A"}], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

You have gone from

\n

\\[ \\left( \\var[fractionNumbers,bareMatrices]{matrix_A} \\middle| \\var[fractionNumbers,bareMatrices]{augmentation_b}\\right)\\qquad \\text{to}  \\qquad\\left( \\var[fractionNumbers,bareMatrices]{swapped_rows_A} \\middle| \\var[fractionNumbers,bareMatrices]{swapped_rows_b}\\right)\\]

"}, {"type": "information", "useCustomName": true, "customName": "Finish", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Your final system is:

\n

\\[ \\left( \\var[fractionNumbers,bareMatrices]{matrix_A} \\middle| \\var[fractionNumbers,bareMatrices]{augmentation_b}\\right)\\]

"}], "partsMode": "explore", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "andrew tonks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/522/"}, {"name": "Julia Goedecke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5121/"}]}]}], "contributors": [{"name": "andrew tonks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/522/"}, {"name": "Julia Goedecke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5121/"}]}