// Numbas version: finer_feedback_settings {"name": "Functions: Transformations (Combinations) 2a", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Functions: Transformations (Combinations) 2a", "tags": [], "metadata": {"description": "

Finding the transformation of a function of the form $f(x)=\\frac{mx+c}{x^2-d}$ to $f(ax+b)$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

If $f(x)=\\simplify{({m}x+{c})/(x^2-{d})}$ for $x\\neq \\simplify{sqrt({d})}$, what is $f(\\simplify{{a}x+{b}})$?

", "advice": "

To make the transformation from $f(x)=\\simplify{({m}x+{c})/(x^2-{d})}$ to $\\simplify{f({a}x+{b})}$, we need to replace the $x$-terms in $f(x)$ with $\\simplify{{a}x+{b}}$:

\n

{advice}

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "advice": {"name": "advice", "group": "Ungrouped variables", "definition": "if(simp=1,'{sol1}','{sol2}')", "description": "", "templateType": "anything", "can_override": false}, "sol1": {"name": "sol1", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\begin{split} \\\\simplify{f({a}x+{b})} &\\\\,= \\\\simplify[unitFactor]{({m}({a}x+{b})+{c})/(({a}x+{b})^2-{d})} \\\\\\\\ &\\\\,= \\\\simplify[unitFactor,!collectNumbers]{({m*a}x+{m*b}+{c})/(({a^2}x^2+{2*a*b}x+{b^2})-{d})} \\\\\\\\&\\\\,= \\\\simplify[unitFactor]{({m*a}x+{m*b+c})/({a^2}x^2+{2*a*b}x+{b^2-d})}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "sol2": {"name": "sol2", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\begin{split} \\\\simplify{f({a}x+{b})} &\\\\,= \\\\simplify[unitFactor]{({m}({a}x+{b})+{c})/(({a}x+{b})^2-{d})} \\\\\\\\ &\\\\,= \\\\simplify[unitFactor,!collectNumbers]{({m*a}x+{m*b}+{c})/(({a^2}x^2+{2*a*b}x+{b^2})-{d})} \\\\\\\\ &\\\\,= \\\\simplify[unitFactor]{({m*a}x+{m*b+c})/({a^2}x^2+{2*a*b}x+{b^2-d})} \\\\\\\\ &\\\\,= \\\\simplify[unitFactor]{({m*a/simp}x+{(m*b+c)/simp})/({a^2/simp}x^2+{2*a*b/simp}x+{(b^2-d)/simp})}. \\\\end{split} \\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "simp": {"name": "simp", "group": "Ungrouped variables", "definition": "gcd(facden,facnum)", "description": "", "templateType": "anything", "can_override": false}, "facnum": {"name": "facnum", "group": "Ungrouped variables", "definition": "gcd(m*a,m*b+c)", "description": "", "templateType": "anything", "can_override": false}, "facden1": {"name": "facden1", "group": "Ungrouped variables", "definition": "gcd(a^2,2*a*b)", "description": "", "templateType": "anything", "can_override": false}, "facden2": {"name": "facden2", "group": "Ungrouped variables", "definition": "gcd(a^2,b^2-d)", "description": "", "templateType": "anything", "can_override": false}, "facden": {"name": "facden", "group": "Ungrouped variables", "definition": "gcd(facden1,facden2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "abs(m*b+c)>0", "maxRuns": 100}, "ungrouped_variables": ["m", "c", "d", "a", "b", "advice", "sol1", "sol2", "simp", "facnum", "facden1", "facden2", "facden"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$f(\\simplify{{a}x+{b}})=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({m*a/simp}x+{(m*b+c)/simp})/({a^2/simp}x^2+{2*a*b/simp}x+{(b^2-d)/simp})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}]}], "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}