// Numbas version: finer_feedback_settings {"name": "Functions: Transformations (Combinations) 2c", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Functions: Transformations (Combinations) 2c", "tags": [], "metadata": {"description": "
Finding the transformation of a function of the form $f(x)=\\frac{mx+c}{x^2-d}$ to $af(bx)$.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "If $f(x)=\\simplify{({m}x+{c})/(x^2-{d})}$ for $x\\neq \\simplify{sqrt({d})}$, what is $\\simplify{{a}f({b}x)}$?
", "advice": "To make the transformation from $f(x)=\\simplify{({m}x+{c})/(x^2-{d})}$ to $\\simplify{{a}f({b}x)}$, we need to replace the $x$-terms in $f(x)$ with $\\simplify{{b}x}$ and then multiply that function by $\\var{a}$:
\n{advice}
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "advice": {"name": "advice", "group": "Ungrouped variables", "definition": "if(simp=1,'{sol1}',if(gcd(abs(a*simp),facden)>1,'{sol3}','{sol2}'))", "description": "", "templateType": "anything", "can_override": false}, "sol1": {"name": "sol1", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\begin{split} \\\\simplify{{a}f({b}x)} &\\\\,= \\\\var{a}\\\\left(\\\\simplify[unitFactor,!expandBrackets]{({m}({b}x)+{c})/(({b}x)^2-{d})}\\\\right) \\\\\\\\ &\\\\,= \\\\var{a}\\\\left(\\\\simplify[unitFactor]{({m*b}x+{c})/({b^2}x^2-{d})}\\\\right) \\\\\\\\&\\\\,= \\\\simplify[all,unitFactor]{{a}({m*b}x+{c})/({facden}({b^2/facden}x^2-{d/facden}))}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "sol2": {"name": "sol2", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\begin{split} \\\\simplify{{a}f({b}x)} &\\\\,= \\\\var{a}\\\\left(\\\\simplify[unitFactor,!expandBrackets]{({m}({b}x)+{c})/(({b}x)^2-{d})}\\\\right) \\\\\\\\ &\\\\,= \\\\var{a}\\\\left(\\\\simplify[unitFactor]{({m*b}x+{c})/({b^2}x^2-{d})}\\\\right) \\\\\\\\&\\\\,= \\\\simplify[unitFactor]{{a*simp}({m*b/simp}x+{c/simp})/({facden}({(b^2)/facden}x^2-{d/facden}))}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "simp": {"name": "simp", "group": "Ungrouped variables", "definition": "if(m*b<0 and c<0,-gcd(m*b,c),gcd(m*b,c))", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "facden": {"name": "facden", "group": "Ungrouped variables", "definition": "gcd(b^2,d)", "description": "", "templateType": "anything", "can_override": false}, "sol3": {"name": "sol3", "group": "Ungrouped variables", "definition": "\"\\\\[ \\\\begin{split} \\\\simplify{{a}f({b}x)} &\\\\,= \\\\var{a}\\\\left(\\\\simplify[unitFactor,!expandBrackets]{({m}({b}x)+{c})/(({b}x)^2-{d})}\\\\right) \\\\\\\\ &\\\\,= \\\\var{a}\\\\left(\\\\simplify[unitFactor]{({m*b}x+{c})/({b^2}x^2-{d})}\\\\right) \\\\\\\\&\\\\,= \\\\simplify[unitFactor]{{a*simp}({m*b/simp}x+{c/simp})/({facden}({(b^2)/facden}x^2-{d/facden}))} \\\\\\\\ &\\\\,=\\\\simplify[unitFactor]{{a*simp/fac}({m*b/simp}x+{c/simp})/({facden/fac}({(b^2)/facden}x^2-{d/facden}))}. \\\\end{split} \\\\]
\"", "description": "", "templateType": "long string", "can_override": false}, "fac": {"name": "fac", "group": "Ungrouped variables", "definition": "gcd(abs(a*simp),facden)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["m", "c", "d", "a", "b", "advice", "sol1", "sol2", "sol3", "simp", "facden", "fac"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{a}f({b}x)}=$[[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a*simp/fac}({m*b/simp}x+{c/simp})/({facden/fac}({(b^2)/facden}x^2-{d/facden}))", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}]}], "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}