// Numbas version: finer_feedback_settings {"name": "Rechnen mit komplexen Zahlen III", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Rechnen mit komplexen Zahlen III", "tags": [], "metadata": {"description": "
Inverse and division of complex numbers. Four parts.
\nOriginal: https://numbas.mathcentre.ac.uk/question/11786/arithmetics-of-complex-numbers-iii/ by Newcastle University Mathematics and Statistics
\nTranslated to German.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Schreiben Sie die folgenden Ausdrücke in der Form $a+bi$ mit $a,b\\in\\mathbb R$.
\nGeben Sie $a$ und $b$ als Bruchzahlen oder als ganze Zahlen an.
", "advice": "Um einen Bruch komplexer Zahlen in der Form $a+bi$ zu schreiben, erweitern wir so, dass wir die dritte binomische Formel anwenden können und dann eine reelle Zahl im Nenner erhalten.
Für \\[ z = \\frac{a+bi}{c+di},\\;\\; c+di \\neq 0\\] haben wir
\\[\\begin{eqnarray*} z&=&\\frac{a+bi}{c+di}\\\\ &=&\\frac{(a+bi)(c-di)}{(c+di)(c-di)}\\\\ &=&\\frac{(ac+bd)+(bc-ad)i}{c^2+d^2}\\\\ &=&\\frac{ac+bd}{c^2+d^2}+\\frac{bc-ad}{c^2+d^2}i \\end{eqnarray*} \\]
(Statt der Formel sollten Sie sich die Methode merken.)
(a)
\\[\\begin{eqnarray*}\\simplify[std]{{c1}/{z1}} &=&\\simplify[std]{({c1}*{conj(z1)})/({z1}*{conj(z1)})}\\\\ &=&\\simplify[std]{{c1*conj(z1)}/{abs(z1)^2}}\\\\ &=& \\simplify[std]{{c1*re(z1)}/{abs(z1)^2}-{c1*im(z1)}/{abs(z1)^2}*i} \\end{eqnarray*} \\]
(b)
\\[\\begin{eqnarray*}\\simplify[std]{{c2}/{z2}} &=&\\simplify[std]{({c2}*{conj(z2)})/({z2}*{conj(z2)})}\\\\ &=&\\simplify[std]{{c2*conj(z2)}/{abs(z2)^2}}\\\\ &=& \\simplify[std]{{c2*re(z2)}/{abs(z2)^2}-{c2*im(z2)}/{abs(z2)^2}*i} \\end{eqnarray*} \\]
(c)
\\[\\begin{eqnarray*}\\simplify[std]{{z1}/{z3}} &=&\\simplify[std]{({z1}*{conj(z3)})/({z3}*{conj(z3)})}\\\\ &=&\\simplify[std]{{z1*conj(z3)}/{abs(z3)^2}}\\\\ &=& \\simplify[std]{{re(z1*conj(z3))}/{abs(z3)^2}+{im(z1*conj(z3))}/{abs(z3)^2}*i} \\end{eqnarray*} \\]
(d)
\\[\\begin{eqnarray*}\\simplify[std]{{z3}/{z2}} &=&\\simplify[std]{({z3}*{conj(z2)})/({z2}*{conj(z2)})}\\\\ &=&\\simplify[std]{{z3*conj(z2)}/{abs(z2)^2}}\\\\ &=& \\simplify[std]{{re(z3*conj(z2))}/{abs(z2)^2}+{im(z3*conj(z2))}/{abs(z2)^2}*i} \\end{eqnarray*} \\]
$\\displaystyle \\simplify[std]{{c1}/{z1}} = $ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{c1*re(z1)/abs(z1)^2}-{c1*im(z1)/abs(z1)^2}*i", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "`+-((integer:$n/integer:$n`?))`? + ((`+-integer:$n`?/integer:$n`?)*i `| `+-i)`?", "partialCredit": 0, "message": "Die Antwort hat nicht die Form $a+bi$.", "nameToCompare": ""}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\displaystyle \\simplify[std]{{c2}/{z2}}\\;=\\;$[[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{c2*re(z2)/abs(z2)^2}-{c2*im(z2)/abs(z2)^2}*i", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "`+-((integer:$n/integer:$n`?))`? + ((`+-integer:$n`?/integer:$n`?)*i `| `+-i)`?", "partialCredit": 0, "message": "Die Antwort hat nicht die Form $a+bi$.", "nameToCompare": ""}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\displaystyle \\simplify[std]{{z1}/{z3}}\\;=\\;$[[0]].
\nSchreiben Sie Ihre Antwort ohne Klammern.
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{re(z1*conj(z3))/abs(z3)^2}+{im(z1*conj(z3))/abs(z3)^2}*i", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "`+-((integer:$n/integer:$n`?))`? + ((`+-integer:$n`?/integer:$n`?)*i `| `+-i)`?", "partialCredit": 0, "message": "Die Antwort hat nicht die Form $a+bi$.", "nameToCompare": ""}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\displaystyle \\simplify[std]{{z3}/{z2}}\\;=\\;$[[0]].
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{re(z3*conj(z2))/abs(z2)^2}+{im(z3*conj(z2))/abs(z2)^2}*i", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "`+-((integer:$n/integer:$n`?))`? + ((`+-integer:$n`?/integer:$n`?)*i `| `+-i)`?", "partialCredit": 0, "message": "Die Antwort hat nicht die Form $a+bi$.", "nameToCompare": ""}, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ulrich G\u00f6rtz", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7603/"}], "resources": []}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ulrich G\u00f6rtz", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7603/"}]}