// Numbas version: finer_feedback_settings {"name": "Rechnen mit komplexen Zahlen V", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Rechnen mit komplexen Zahlen V", "tags": [], "metadata": {"description": "

Direct calculation of low positive and negative powers of complex numbers. Calculations involving a complex conjugate. Powers of $i$. Four parts.

\n

Original: https://numbas.mathcentre.ac.uk/question/11788/arithmetics-of-complex-numbers-v/ by Newcastle University Mathematics and Statistics

\n

Tramslated to German

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Schreiben Sie die folgenden komplexen Zahlen $z$ in der Form $a+bi$ mit reellen Zahlen $a$ und $b$.

\n

Geben Sie $a$ und $b$ als Bruchzahlen oder als ganze Zahlen an.

\n

Je nachdem, wieviel \"Glück\" Sie mit dem Zufallszahlengenerator haben, sind die Zahlen bei dieser Aufgabe ziemlich groß. Lassen Sie gegebenenfalls eine neue Aufgabe erzeugen oder nehmen Sie für die Rechnungen in den ganzen Zahlen, die auszuführen sind, einen Taschenrechner zur Hand...

", "advice": "

a)

\n

Für jede komplexe Zahl $z=a+bi$ gilt

\n

$(a+bi)(a-bi) =a^2+b^2$.

\n

Also haben wir
\\[\\begin{eqnarray*}z&=&(\\var{z1})^{\\var{c1}}(\\var{conj(z1)})^{\\var{c1}}\\\\ &=&((\\var{z1})(\\var{conj(z1)}))^{\\var{c1}}\\\\ &=&\\simplify[]{({re(z1)}^2+{im(z1)}^2)^{c1}}\\\\ &=&\\var{(re(z1)^2+im(z1)^2)^c1} \\end{eqnarray*}\\]

\n

b)

\n

Beachten Sie, dass $(\\var{z2})^4=((\\var{z2})^2)^2$.

\n

Weil $(\\var{z2})^2=\\simplify[std]{{z2^2}}$, gilt
\\[(\\var{z2})^4=(\\simplify[std]{{z2^2}})^2=\\simplify[std]{{z2^4}}\\]

\n

c)
Es gilt
\\[ \\begin{eqnarray*} z&=&(\\var{z3})^{\\var{-d1}}\\\\ &=&\\frac{1}{(\\var{z3})^{\\var{d1}}}\\\\ &=&\\frac{(\\var{conj(z3)})^{\\var{d1}}}{(\\var{z3})^{\\var{d1}}(\\var{conj(z3)})^{\\var{d1}}}\\\\ &=&\\frac{\\var{conj(z3)^d1}}{\\var{abs(z3)^(2*d1)}}\\\\ &=&\\simplify[std]{{re(conj(z3^d1))}/{(abs(z3)^(2*d1))}+({im(conj(z3^d1))}/{round(abs(z3)^(2*d1))})*i} \\end{eqnarray*}\\]
d)
Es ist $i^2=-1,\\;\\;i^3=-i,\\;\\;i^4=1$.

\n

Also gilt für $n=4m+r,\\;\\;0\\le r\\le 3$, dass \\[i^n=i^{4m+r}=(i^4)^m \\cdot i^r=i^r\\]
In diesem Fall ist $\\var{n}=4\\cdot\\var{m}+\\var{rem}$, also folgt
\\[i^{\\var{n}}=i^{\\var{rem}}=\\simplify{i^{rem}}\\]

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "extensions": [], "variables": {"s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2000..5000)", "description": "", "templateType": "anything"}, "rem": {"name": "rem", "group": "Ungrouped variables", "definition": "random(0..3)", "description": "", "templateType": "anything"}, "s4": {"name": "s4", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "z2": {"name": "z2", "group": "Ungrouped variables", "definition": "s2*random(1..5)+s4*random(1..5)*i", "description": "", "templateType": "anything"}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "random(2,3)", "description": "", "templateType": "anything"}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(3..5)", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "4*m+rem", "description": "", "templateType": "anything"}, "s3": {"name": "s3", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "z3": {"name": "z3", "group": "Ungrouped variables", "definition": "s2*random(1..5)+s3*random(1..5)*i", "description": "", "templateType": "anything"}, "z1": {"name": "z1", "group": "Ungrouped variables", "definition": "s1*random(1..5)+s3*random(1..5)*i", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["s3", "s2", "s1", "m", "s4", "d1", "rem", "c1", "n", "z1", "z2", "z3"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[z=(\\var{z1})^{\\var{c1}}(\\var{conj(z1)})^{\\var{c1}}\\]
$z=\\;\\;$[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{round((z1*conj(z1))^c1)}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": ""}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[z=(\\var{z2})^4\\]
$z=\\;\\;$[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{z2^4}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[z=(\\var{z3})^{\\var{-d1}}\\]
$z=\\;\\;$[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{re(conj(z3^d1))}/{abs(z3^(2*d1))}+({im(conj(z3^d1))}/{round(abs(z3)^(2*d1))})*i", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": ""}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[z=i^{\\var{n}}\\]
$z=\\;\\;$[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{i^rem}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ulrich G\u00f6rtz", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7603/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ulrich G\u00f6rtz", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7603/"}]}