// Numbas version: finer_feedback_settings {"name": "Functions: Domain - log function", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Functions: Domain - log function", "tags": [], "metadata": {"description": "

Given a randomised log function select the possible ways of writing the domain of the function.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

For a function such as

\n

\\[ g(t)=\\log_{\\var{base}}(\\simplify{t-{c[0]}})\\]

\n

we can only take the log of a positive number. That is,

\n

\\[ \\simplify{t-{c[0]}>0} . \\]

\n

Rearranging this inequality for $t$ gives $\\simplify{t>{c[0]}}$.

\n

Therefore, \\[ \\text{Domain}(g)=\\{t\\in\\mathbb{R}:\\,\\simplify{t>{c[0]}}\\}.\\]

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"out": {"name": "out", "group": "Ungrouped variables", "definition": "expression(random('f','h','g','p','q','y'))", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-12..-1)", "description": "", "templateType": "anything", "can_override": false}, "rat": {"name": "rat", "group": "Ungrouped variables", "definition": "if(n=3,'\\\\[\\\\simplify{{out}({inp})=({num[0]}{inp}+{num[1]})/(({inp}-{c[0]})({inp}-{c[1]})*({inp}-{c[2]}))}\\\\]',\nif(n=2,'\\\\[\\\\simplify{{out}({inp})=({num[0]}{inp}+{num[1]})/(({inp}-{c[0]})({inp}-{c[1]}))}\\\\]',\n'\\\\[\\\\simplify{{out}({inp})=({num[0]}{inp}+{num[1]})/(({inp}-{c[0]})({inp}-{c[1]})*({inp}-{c[2]})*({inp}-{c[3]}))}\\\\]'))\n \n \n", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "a+random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "[random(-12..12),random(-12..12 except 0)]", "description": "", "templateType": "anything", "can_override": false}, "base": {"name": "base", "group": "Ungrouped variables", "definition": "random(2..12 except 10)", "description": "

base

", "templateType": "anything", "can_override": false}, "inp": {"name": "inp", "group": "Ungrouped variables", "definition": "expression(random('x','r','s','t','w'))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["out", "inp", "num", "n", "c", "rat", "a", "b", "base", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given that \\[g(t)=\\log_{\\var{base}}(\\simplify{t-{c[0]}}),\\] what do we require of $t$ so that $g(t)$ is defined as a function?

\n

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "1", "showCellAnswerState": true, "choices": ["

$t>\\var{c[0]}$

", "

$t\\ge \\var{c[0]}$

", "

$t<\\var{c[0]}$

", "

$t\\le \\var{c[0]}$

", "

$t>0$

", "

$t\\ne0$

"], "matrix": ["1", 0, 0, 0, 0, 0], "distractors": ["", "", "", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "resources": []}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}