// Numbas version: finer_feedback_settings {"name": "Matrix multiplication with an indeterminate (WBQ1.35)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Matrix multiplication with an indeterminate (WBQ1.35)", "tags": ["indeterminate", "matrix multiplication"], "metadata": {"description": "
Use matrix multiplication to get an equation for \\(k\\) which is then to be solved.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "We have
\n\\(\\begin{pmatrix} k & 1 &1\\end{pmatrix}\\var{A}\\begin{pmatrix}k\\\\1\\\\1\\end{pmatrix}= \\begin{pmatrix} k & 1 &1\\end{pmatrix}\\begin{pmatrix}k+1\\\\k+2\\\\-1\\end{pmatrix}\\)
\n\\(=k(k+1)+k+2-1=k^2+2k+1=(k+1)^2\\).
\nSo this is zero when \\(k=-1\\).
", "rulesets": {}, "extensions": [], "variables": {"A": {"name": "A", "group": "Ungrouped variables", "definition": " matrix([[1,1,0],[1,0,2],[0,2,-3]])", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["A"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "Show some steps", "rawLabel": "Show some steps", "otherPart": 1, "variableReplacements": [], "availabilityCondition": "not (answered and credit=1)", "penalty": "", "penaltyAmount": 0, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "For which \\(k\\) is
\n\\(\\begin{pmatrix} k & 1 &1\\end{pmatrix}\\var{A}\\begin{pmatrix}k\\\\1\\\\1\\end{pmatrix}=0\\)?
\n\\(k= \\)[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": "Everything together", "minValue": "-1", "maxValue": "-1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Steps", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the matrix multiplication in two steps:
\n\\(\\var{A}\\begin{pmatrix}k\\\\1\\\\1\\end{pmatrix} = \\left(\\begin{matrix}\\phantom{.}\\\\\\phantom{.}\\\\\\phantom{.}\\\\\\phantom{.}\\end{matrix}\\right.\\) | \n[[0]] | \n\\(\\left.\\begin{matrix}\\phantom{.}\\\\\\phantom{.}\\\\\\phantom{.}\\\\\\phantom{.}\\end{matrix}\\right)\\) | \n
[[1]] | \n||
[[2]] | \n
Then calculate \\(\\begin{pmatrix} k & 1 &1\\end{pmatrix} \\) times your answer, to get: [[3]]
\nNow set this expression \\(=0\\) and resolve for \\(k\\). \\(k= \\)[[4]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Entry 1", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": "Matrix multiplication", "answer": "k+1", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "k", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Entry 2", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": "Matrix multiplication", "answer": "k+2", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "k", "value": ""}]}, {"type": "jme", "useCustomName": true, "customName": "Entry 3", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": "Matrix multiplication", "answer": "-1", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}, {"type": "jme", "useCustomName": true, "customName": "Final matrix product", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "failMatchPattern (Does the student's answer not match the required pattern?):\n assert(settings[\"mustMatchPattern\"]=\"\",\n assert(matches(studentExpr,settings[\"mustMatchPattern\"]),\n if(compareName=\"\",\n multiply_credit(settings[\"mustMatchPC\"], settings[\"mustMatchMessage\"])\n ,\n set_credit(0,settings[\"mustMatchMessage\"])\n );\n warn(settings[\"mustMatchMessage\"]);\n fail(settings[\"mustMatchMessage\"]);\n true\n )\n )", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": "Matrix multiplication", "answer": "k^2+2k+1", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "mustmatchpattern": {"pattern": "k^2+2k+1`|(k+1)^2", "partialCredit": "100", "message": "Not simplified", "nameToCompare": ""}, "valuegenerators": [{"name": "k", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "k", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": "Solve for k", "minValue": "-1", "maxValue": "-1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "explore", "maxMarks": "3", "objectives": [{"name": "Matrix multiplication", "limit": "2", "mode": "sum"}, {"name": "Solve for k", "limit": "1", "mode": "sum"}, {"name": "Everything together", "limit": "3", "mode": "sum"}], "penalties": [], "objectiveVisibility": "when-active", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Julia Goedecke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5121/"}]}]}], "contributors": [{"name": "Julia Goedecke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5121/"}]}