// Numbas version: finer_feedback_settings {"name": "Trigonometry: Solving Trigonometric Equations 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Trigonometry: Solving Trigonometric Equations 2", "tags": [], "metadata": {"description": "

Solving $\\sin(2x)-\\tan(x)=0$ for $x\\in \\left(0,\\frac{\\pi}{2}\\right)$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Solve $\\sin(2x)-\\tan(x)=0$, for $x \\in \\left(0,\\frac{\\pi}{2}\\right)$. 

", "advice": "

To solve \\[ \\sin(2x)-\\tan(x)=0, \\]

\n

we want to rewrite the the equation using the following trigonometric identities:

\n\n

\\[ \\begin{split} \\sin(2x) - \\tan(x) &\\,=0  \\\\ 2\\sin(x)\\cos(x) - \\dfrac{\\sin(x)}{\\cos(x)} &\\,= 0 \\\\ 2\\sin(x)\\cos^2(x) - \\sin(x) &\\,= 0 \\\\ 2\\cos^2(x) - 1 &\\,=0. \\end{split} \\]

\n

Therefore,

\n

\\[ \\begin{split} \\cos^2(x) &\\,=\\frac{1}{2} \\\\ \\cos(x) &\\,= \\frac{1}{\\sqrt{2}}\\\\ x &\\, = \\cos^{-1}\\left(\\frac{1}{\\sqrt{2}}\\right). \\end{split} \\]

\n

So our solution is \\[ \\begin{split} x &\\, = \\cos^{-1}\\left(\\frac{1}{\\sqrt{2}}\\right) \\\\ &\\,= \\frac{\\pi}{4} \\\\ &\\,= 0.785 \\, (3\\text{ d.p.}).  \\end{split} \\]

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$x=$[[0]] (Give your answer to 3 decimal places, or in terms of $\\pi$.)

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "pi/4", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}]}], "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}