// Numbas version: exam_results_page_options {"name": "Inverting a 3x3 Matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Inverting a 3x3 Matrix", "tags": [], "metadata": {"description": "

Semi-worked example of inverting a 3x3 matrix using cofactor, adjoint and determinant.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Inverting a 3x3 Matrix: the adjoint method

\n

There are a number of ways to find the inverse of a 3x3 matrix. This worked exercise will cover the adjoint method.

\n

\n

To find the inverse of a matrix using the adjoint method we use the following steps:

\n
    \n
  1. Calculate the determinant of the matrix you have been given
  2. \n
  3. Calculate the cofactor matrix
  4. \n
  5. Transpose the cofactor matrix to create the adjoint matrix
  6. \n
  7. Perform a scalar multiplication of 1/determinant x adjoint matrix
  8. \n
\n

\n

Consider matrix $A$ below:

\n

$A=\\var{ma}$

", "advice": "", "rulesets": {}, "extensions": [], "variables": {"ma": {"name": "ma", "group": "Ungrouped variables", "definition": "matrixRandomInvertable(matrixrandom(3,3))", "description": "", "templateType": "anything"}, "det_ma": {"name": "det_ma", "group": "Ungrouped variables", "definition": "det(ma)", "description": "", "templateType": "anything"}, "cofm": {"name": "cofm", "group": "Ungrouped variables", "definition": "cof(ma)", "description": "", "templateType": "anything"}, "cofn": {"name": "cofn", "group": "Ungrouped variables", "definition": "matrix(\n [cofm[0][0],-cofm[0][1],cofm[0][1]],\n [-cofm[1][0],cofm[1][1],-cofm[1][1]],\n [cofm[2][0],-cofm[2][1],cofm[2][1]]\n)", "description": "

cofactor elements before sign rule applied

", "templateType": "anything"}}, "variablesTest": {"condition": "det_ma<>0", "maxRuns": 100}, "ungrouped_variables": ["ma", "det_ma", "cofm", "cofn"], "variable_groups": [], "functions": {"matrixrandom": {"parameters": [["rows", "integer"], ["columns", "integer"]], "type": "matrix", "language": "jme", "definition": "matrix(repeat(repeat(random(0..9)*(random(1,1,1,-1)),columns),rows))"}, "matrixRandomInvertable": {"parameters": [["ma", "matrix"]], "type": "matrix", "language": "jme", "definition": "if(det(ma)<>0,ma,\n matrixRandomInvertable(\n matrix(repeat(repeat(random(0..9)*(random(1,1,1,-1)),numcolumns(ma)),numrows(ma)))\n )\n)"}, "cof": {"parameters": [["m", "matrix"]], "type": "matrix", "language": "jme", "definition": "matrix([\n [m[1][1]*m[2][2]-m[2][1]*m[1][2], -(m[1][0]*m[2][2]-m[2][0]*m[1][2]), m[1][0]*m[2][1]-m[2][0]*m[1][1]],\n [-(m[0][1]*m[2][2]-m[2][1]*m[0][2]), m[0][0]*m[2][2]-m[2][0]*m[0][2], -(m[0][0]*m[2][1]-m[2][0]*m[0][1])],\n [m[0][1]*m[1][2]-m[1][1]*m[0][2], -(m[0][0]*m[1][2]-m[1][0]*m[0][2]), m[0][0]*m[1][1]-m[1][0]*m[0][1]]\n])"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": true, "customName": "Step 1: Determinant", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

First we calculate the determinant of matrix $A$.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

To find the determinant of a 3x3 matrix, we find the sum of the products of the leading diagonals, and subract the sum of the products of the non-leading diagonals. For example, if we had the following matrix:

\n

$\\begin{pmatrix}
a & b & c \\\\
d & e & f \\\\
g & h & i \\\\
\\end{pmatrix}$ the deteminat would be calculate as: $(aei + bfg + cdh) - (ceg + bdi + afh)$

"}], "minValue": "det(ma)", "maxValue": "det(ma)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "gapfill", "useCustomName": true, "customName": "Step 2a: Cofactor elements", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Second, we calculate the nine cofactors of matrix $A$:

\n

$A _{11}$ cofactor in position 1,1 is [[0]]

\n

$A_{12}$ cofactor in position 1,2 is [[1]]

\n

$A_{13}$ cofactor in position 1,3 is [[2]]

\n

$A_{21}$ cofactor in position 2,1 is [[3]]

\n

$A_{22}$ cofactor in position 2,2 is [[4]]

\n

$A_{23}$ cofactor in position 2,3 is [[5]]

\n

$A_{31}$ cofactor in position 3,1 is [[6]]

\n

$A_{32}$ cofactor in position 3,2 is [[7]]

\n

$A_{33}$ cofactor in position 3,3 is [[8]]

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

We know that the cofactor matrix will be a 3x3 matrix as $A$ is a 3x3 matrix. Therefore we will be calculating 9 individual cofactors. To calculate the cofactors we eliminate the elements in the row and column containing the element. We then calculate the determinant from the remaining elements.

\n

\n

Consdier the matrix $B = \\begin{pmatrix}
a & b & c \\\\
d & e & f \\\\
g & h & i \\\\
\\end{pmatrix}$

\n

To calculate the first cofactor element $B_{11}$ we eleminate $a$, $b$ and $c$, and $a$ (again), $d$ and $g$. This leaves us with the matrix $\\begin{pmatrix}e & f\\\\ h & i \\end{pmatrix}$. We find the determinant of this matrix. Therefore:

\n

$B_{11} = (e \\times i) - (f \\times h)$
$B_{12} = (d \\times i) - (f \\times g)$
$B_{13} = (d \\times h) - (e \\times g)$

\n

and so on...

\n

\n

$A = \\simplify{{ma}}$

"}, {"type": "numberentry", "useCustomName": true, "customName": "First element", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

So $A_{11} = (\\var{ma[1][1]}\\times\\var{ma[2][2]}) - (\\var{ma[1][2]}\\times\\var{ma[2][1]}) = $?

", "minValue": "cofm[0][0]", "maxValue": "cofm[0][0]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "Second element", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

So $A_{12} = (\\var{ma[1][0]}\\times\\var{ma[2][2]}) - (\\var{ma[1][2]}\\times\\var{ma[2][0]}) = $?

", "minValue": "cofm[0][1]", "maxValue": "cofm[0][1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "Third element", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

So $A_{13} = (\\var{ma[1][0]}\\times\\var{ma[2][1]}) - (\\var{ma[1][1]}\\times\\var{ma[2][0]}) = $?

", "minValue": "cofm[0][2]", "maxValue": "cofm[0][2]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

And so on...

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "cofm[0][0]", "maxValue": "cofm[0][0]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "-cofm[0][1]", "maxValue": "-cofm[0][1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "cofm[0][2]", "maxValue": "cofm[0][2]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "-cofm[1][0]", "maxValue": "-cofm[1][0]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "cofm[1][1]", "maxValue": "cofm[1][1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "-cofm[1][2]", "maxValue": "-cofm[1][2]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "cofm[2][0]", "maxValue": "cofm[2][0]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "-cofm[2][1]", "maxValue": "-cofm[2][1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "cofm[2][2]", "maxValue": "cofm[2][2]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "matrix", "useCustomName": true, "customName": "Step 2b: Cofactor matrix", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Next, place the cofactor elements in a matrix and apply the signs rule to find the cofactor matrix.

", "stepsPenalty": 0, "steps": [{"type": "matrix", "useCustomName": true, "customName": "Place elements", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Place the cofactor elelments into a matrix, such that $\\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\\\
a_{21} & a_{22} & a_{33} \\\\
a_{31} & a_{32} & a_{33}
\\end{pmatrix}$

", "correctAnswer": "cofn", "correctAnswerFractions": false, "numRows": "3", "numColumns": "3", "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}, {"type": "matrix", "useCustomName": true, "customName": "Apply sign rule", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Next, apply the signs rule: Some signs will stay the same(s), and some signs need to be changed(c) using the following pattern: $\\begin{pmatrix}
s & c & s \\\\
c & s & c \\\\
s & c & s
\\end{pmatrix}$.

\n

(Essentially, change every other element)

", "correctAnswer": "cofm", "correctAnswerFractions": false, "numRows": "3", "numColumns": "3", "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "correctAnswer": "cofm", "correctAnswerFractions": false, "numRows": "3", "numColumns": "3", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}, {"type": "matrix", "useCustomName": true, "customName": "Step 3: Adjoint matrix", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Now, transpose the cofactor matrix to find the adjoint matrix.

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

To find the adjoint matrix, all we have to do is transpose the cofactor matrix. To find the transpose of a matrix, the rows in the matrix become the columns in the new, tranposed matrix.

\n

If we had the matrix $\\begin{pmatrix}
a & b & c \\\\
d & e & f \\\\
g & h & i \\\\
\\end{pmatrix}$, the transposed matrix would be $\\begin{pmatrix}
a & d & g \\\\
b & e & h \\\\
c & f & i \\\\
\\end{pmatrix}$

"}], "correctAnswer": "transpose(cofm)", "correctAnswerFractions": false, "numRows": "3", "numColumns": "3", "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}, {"type": "matrix", "useCustomName": true, "customName": "Step 4:", "marks": "9", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Lastly, we perform a scalar multiplication of $\\dfrac{1}{\\text{determinant}} \\times \\text{adjoint matrix}$

\n

\n

(Enter answers as fractions.)

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

This is the same as dividing every element by the determinant.

"}], "correctAnswer": "transpose(cofm)/det(ma)", "correctAnswerFractions": true, "numRows": "3", "numColumns": "3", "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Mark Patterson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5064/"}]}]}], "contributors": [{"name": "Mark Patterson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5064/"}]}