// Numbas version: exam_results_page_options {"name": "Pendulum", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Pendulum-Large.png", "/srv/numbas/media/question-resources/Pendulum-Large.png"], ["question-resources/Pendulum-Solution.png", "/srv/numbas/media/question-resources/Pendulum-Solution.png"], ["question-resources/Pendulum-Solution_1ZCmR23.png", "/srv/numbas/media/question-resources/Pendulum-Solution_1ZCmR23.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Pendulum", "tags": [], "metadata": {"description": "

Find angular speed and reaction force of a swinging pendulum.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

A pendulum, with centre of mass ($m$) at G, rotates about the (frictionless) pin joint located at O. The gravitational field is acting vertically downwards ($g=9.81$m/s$^2$).

\n

Note: The moment of inertia about an axis through O normal to the plane of the pendulum is given by $I=mk^2$, where $k$ is the radius of gyration.

\n

", "advice": "

Between its initial and final positions, the pendulum has dropped distance $h=L \\sin(\\phi) - L \\sin(\\phi_0)$ with corresponding potential energy $mgh$ that must be converted to kinetic energy, i.e.:

\n

${1 \\over 2} I_\\text{O} {\\dot \\phi}^2 = m g L \\left( \\sin(\\phi) - \\sin(\\phi_0) \\right)$

\n

which can easily be rearranged to find ${\\dot \\phi}^2$:

\n

${\\dot \\phi}^2 = {2 m g L \\over I_\\text{O}} \\left( \\sin(\\phi) - \\sin(\\phi_0) \\right)$

\n

and thus also ${\\dot \\phi}$.

\n

\n

Taking the time derivative of both sides:

\n

$2 {\\dot \\phi}{\\ddot \\phi} = {2 m g L \\over I_\\text{O}} \\cos(\\phi) {\\dot \\phi}$

\n

which gives an expression for the angular acceleration:

\n

${\\ddot \\phi} = {m g L \\over I_\\text{O}} \\cos(\\phi)$

\n

which is independent of the initial position. By choosing $x$- and $y$-axes instantaneously aligned with the pendulum at the centre of mass, it is possible to describe the acceleration of the pendulum in terms of the centripetal acceleration:

\n

${\\ddot x}_G = - L {\\dot \\phi}^2 = - {2 m g L^2 \\over I_\\text{O}} \\left( \\sin(\\phi) - \\sin(\\phi_0) \\right)$

\n

and the tangential linear acceleration:

\n

${\\ddot y}_G = - L {\\ddot \\phi} = - {m g L^2 \\over I_\\text{O}} \\cos(\\phi)$

\n

If $R$ is the force acting on the pendulum at O, then Newton's Second Law of Motion gives:

\n

$R_x + m g \\sin(\\phi) = m {\\ddot x}_G$

\n

$R_y - m g \\cos(\\phi) = m {\\ddot y}_G$

\n

which can be simply solved to find $R_x$ and $R_y$, and thus the magnitude of $R$.

", "rulesets": {}, "extensions": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "5+random(0..10)*0.5", "description": "

Pendulum mass [units: kg].

", "templateType": "anything"}, "L": {"name": "L", "group": "Ungrouped variables", "definition": "random(20..40)*10", "description": "

Length OG [units: mm].

", "templateType": "anything"}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "L+2+4*random(-11..10)", "description": "

Radius of gyration [units: mm].

", "templateType": "anything"}, "I_O": {"name": "I_O", "group": "Ungrouped variables", "definition": "m*(k/1000)^2", "description": "

Moment of inertia about O.

", "templateType": "anything"}, "phi_i": {"name": "phi_i", "group": "Ungrouped variables", "definition": "random(0..8)*5", "description": "

Initial angle of pendulum [units: degrees].

", "templateType": "anything"}, "phi_f": {"name": "phi_f", "group": "Ungrouped variables", "definition": "random(10..26)*5", "description": "

Final angle of pendulum [units: degrees].

", "templateType": "anything"}, "dU": {"name": "dU", "group": "Ungrouped variables", "definition": "m*9.81*(L/1000)*(sin(radians(phi_f))-sin(radians(phi_i)))", "description": "

Change in potential energy between initial and final locations.

", "templateType": "anything"}, "omega_f": {"name": "omega_f", "group": "Ungrouped variables", "definition": "sqrt(omega_f2)", "description": "

Final angular speed [units: rad/s].

", "templateType": "anything"}, "omega_f2": {"name": "omega_f2", "group": "Ungrouped variables", "definition": "dU*2/I_O", "description": "

Square of final angular speed.

", "templateType": "anything"}, "xGdd": {"name": "xGdd", "group": "Ungrouped variables", "definition": "-(L/1000)*omega_f2", "description": "

${\\ddot x}_G$

", "templateType": "anything"}, "yGdd": {"name": "yGdd", "group": "Ungrouped variables", "definition": "-m*9.81*(L/1000)^2*cos(radians(phi_f))/I_O", "description": "

${\\ddot y}_G$

", "templateType": "anything"}, "Rx": {"name": "Rx", "group": "Ungrouped variables", "definition": "m*(xGdd-9.81*sin(radians(phi_f)))", "description": "

Action force (x-component) at final position.

", "templateType": "anything"}, "Ry": {"name": "Ry", "group": "Ungrouped variables", "definition": "m*(yGdd+9.81*cos(radians(phi_f)))", "description": "

Action force (y-component) at final position.

", "templateType": "anything"}, "R": {"name": "R", "group": "Ungrouped variables", "definition": "sqrt(Rx^2+Ry^2)", "description": "

Total Reaction at final angle.

", "templateType": "anything"}, "omega_f_lo": {"name": "omega_f_lo", "group": "Ungrouped variables", "definition": "siground(omega_f * 0.99,3)", "description": "", "templateType": "anything"}, "omega_f_hi": {"name": "omega_f_hi", "group": "Ungrouped variables", "definition": "siground(omega_f * 1.01,3)", "description": "", "templateType": "anything"}, "R_lo": {"name": "R_lo", "group": "Ungrouped variables", "definition": "siground(R * 0.99,3)", "description": "", "templateType": "anything"}, "R_hi": {"name": "R_hi", "group": "Ungrouped variables", "definition": "siground(R * 1.01,3)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["m", "L", "k", "I_O", "phi_i", "phi_f", "dU", "omega_f2", "omega_f", "xGdd", "yGdd", "Rx", "Ry", "R", "omega_f_lo", "omega_f_hi", "R_lo", "R_hi"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Angular speed and reaction force", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The pendulum has a mass $m=\\var{m}$kg. Distance OG (from pin joint to centre of mass) is $L=\\var{L}$mm, and the radius of gyration is $k=\\var{k}$mm.

\n

The pendulum is released from rest at $\\phi=\\var{phi_i}^\\circ$. At the point when $\\phi=\\var{phi_f}^\\circ$, determine:

\n", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "omega", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "omega_f_lo", "maxValue": "omega_f_hi", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "Reaction", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "R_lo", "maxValue": "R_hi", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Francis Franklin", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1887/"}]}]}], "contributors": [{"name": "Francis Franklin", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1887/"}]}