// Numbas version: exam_results_page_options {"name": "Differentiation: Stationary Points and their Nature 3", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Differentiation: Stationary Points and their Nature 3", "tags": [], "metadata": {"description": "

Calculating the derivative of a function of the form $\\frac{(x-a)^2}{bx}$, finding its stationary points and determining their nature.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

\n

\n

", "advice": "

Part (a):

\n

Since the function is of the form $y=\\tfrac{u(x)}{v(x)}$, we want to use the quotient rule to calculate the derivative $\\tfrac{dy}{dx}$.

\n

As \\[ \\simplify{y=(x-{a})^2/({b}x)}, \\]

\n

let \\[ u(x) = \\simplify{(x-{a})^2} \\quad \\text{and} \\quad v(x)=\\simplify{{b}x}.\\]

\n

Next, we need to find the derivatives, $\\tfrac{du}{dx}$ and $\\tfrac{dv}{dx}$:

\n

\\[ \\dfrac{du}{dx} = \\simplify{2(x-{a})}\\quad \\text{and} \\quad\\dfrac{dv}{dx}=\\simplify{{b}}.\\]

\n

Substituting these results into the quotient rule formula we can obtain an expression for $\\tfrac{dy}{dx}$:

\n

\\[ \\begin{split} \\dfrac{dy}{dx} &\\,= \\dfrac{v(x) \\times \\frac{du}{dx} - u(x) \\times\\frac{dv}{dx}}{[v(x)]^2} \\\\ \\\\&\\,=\\dfrac{(\\simplify{{b}x}) \\times\\simplify{2(x-{a})} - \\simplify{(x-{a})^2} \\times \\simplify{{b}}}{\\simplify{({b}x)^2}}.  \\end{split}\\]

\n

Simplifying,

\n

\\[ \\begin{split} \\dfrac{dy}{dx} &\\,=\\dfrac{\\simplify{2{b}x(x-{a})-{b}(x-{a})^2}}{\\simplify{{b}^2x^2}} \\\\ &\\,= \\dfrac{\\simplify{2x(x-{a})-(x-{a})^2}}{\\simplify{{b}x^2}}\\\\ &\\,=\\dfrac{\\simplify[!cancelTerms]{2x^2-{2a}x-x^2+{2a}x-{a^2}}}{\\simplify{{b}x^2}}\\\\ &\\,=\\dfrac{\\simplify{x^2-{a^2}}}{\\simplify{{b}x^2}} \\end{split} \\]

\n

\n

\n

Part (b):

\n

A graph can help. You can pan and zoom this image if you would like to.

\n

{geogebra_applet('https://www.geogebra.org/m/t6vskwck',[a:{a}, b:{b}])}

\n

To find the stationary points of the function, we must solve $\\tfrac{dy}{dx}=0$ for $x$. Setting $\\tfrac{dy}{dx}=0$:

\n

\\[ \\begin{split} \\dfrac{\\simplify{x^2-{a^2}}}{\\simplify{{b}x^2}}&\\,= 0  \\\\ \\implies \\simplify{x^2-{a^2}}&\\,=0 \\end{split} \\]

\n

Therefore, the stationary points are when $x=\\var{abs(a)}$ and $x=\\var{-(abs(a))}$.

\n

We find the corresponding $y$-values of the stationary points by plugging these $x$-values into the initial equation:

\n

When $x=\\var{abs(a)}$,

\n

\\[\\begin{split} y &\\,=\\dfrac{\\simplify[unitFactor,!cancelTerms,fractionNumbers]{({abs(a)}-{a})^2}}{\\simplify[alwaysTimes,unitFactor]{{b}{abs(a)}}} \\\\ &\\,= \\simplify[fractionNumbers]{{(abs(a)-a)^2/(b*abs(a))}} .\\end{split}\\]

\n

When $x=\\var{-abs(a)}$,

\n

\\[\\begin{split} y &\\,=\\dfrac{\\simplify[unitFactor,!cancelTerms,fractionNumbers]{({-abs(a)}-{a})^2}}{\\simplify[alwaysTimes,unitFactor]{{b}({-abs(a)})}} \\\\ &\\,= \\simplify[fractionNumbers]{{(-abs(a)-a)^2/(b*-abs(a))}} .\\end{split}\\]

\n

Therefore, the stationary points are \\[ \\left(\\var{abs(a)},\\simplify[fractionNumbers]{{(abs(a)-a)^2/(b*abs(a))}}\\right)\\quad \\text{and} \\quad \\left(\\var{-abs(a)},\\simplify[fractionNumbers]{{(-abs(a)-a)^2/(b*(-abs(a)))}}\\right).\\]

\n

Finally, we need to determine the nature of the stationary points. To do this we want to calculate the second derivative of the initial function and then evaluate it for each $x$-value of the stationary points. 

\n

Recall:

\n\n

To calculate $\\tfrac{d^2y}{dx^2}$, we want to differentiate $\\tfrac{dy}{dx}$ again with respect to $x$:

\n

\\[ \\begin{split} &\\frac{dy}{dx} &=\\dfrac{\\simplify{x^2-{a^2}}}{\\simplify{{b}x^2}} \\\\ \\\\\\implies &\\frac{d^2y}{dx^2} &\\,= \\dfrac{\\simplify{({b}x^2)(2x)-{2b}x(x^2-{a^2})}}{\\simplify{({b}x^2)^2}} \\\\ &&\\,=\\dfrac{\\simplify[!cancelTerms]{2x^3-2x^3+{2a^2}x}}{\\simplify{{b}x^4}} \\\\ &&\\,=\\simplify[unitFactor]{{2a^2/simp}/({b/simp}x^3)}\\end{split}\\]

\n

For $\\left(\\var{abs(a)},\\simplify[fractionNumbers]{{(abs(a)-a)^2/(b*abs(a))}}\\right)$,  $\\tfrac{d^2y}{dx^2} =\\simplify[fractionNumbers]{{2a^2/(b*(abs(a))^3)}}$, so it is a {maxmin1};

\n

For $\\left(\\var{-abs(a)},\\simplify[fractionNumbers]{{(-abs(a)-a)^2/(b*-abs(a))}}\\right)$,  $\\tfrac{d^2y}{dx^2} =\\simplify[fractionNumbers]{{2a^2/(b*(-abs(a))^3)}}$, so it is a {maxmin2}.

\n

", "rulesets": {}, "extensions": ["geogebra"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-4..4 except 0)", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "(2a/5)^2((2a/5)-a)^3", "description": "", "templateType": "anything", "can_override": false}, "soldp": {"name": "soldp", "group": "Ungrouped variables", "definition": "precround(sol,2)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "maxmin1": {"name": "maxmin1", "group": "Ungrouped variables", "definition": "if((2a^2)/(b*(abs(a))^3)>0,'minimum','maximum')", "description": "", "templateType": "anything", "can_override": false}, "maxmin2": {"name": "maxmin2", "group": "Ungrouped variables", "definition": "if( 2a^2/(b*(-abs(a))^3)>0,'mimimum','maximum')", "description": "", "templateType": "anything", "can_override": false}, "simp": {"name": "simp", "group": "Ungrouped variables", "definition": "gcd(2a^2,b)", "description": "", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "(abs(a)-a)^2/(b*abs(a))", "description": "", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "(-abs(a)-a)^2/(b*-abs(a))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "sol", "soldp", "b", "maxmin1", "maxmin2", "simp", "y1", "y2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the derivative of \\[ \\simplify{y=(x-{a})^2/({b}x)}.\\]

\n

$\\frac{dy}{dx}=$[[0]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x^2-{a}^2)/({b}x^2)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the stationary points of

\n

\\[ \\simplify{y=(x-{a})^2/({b}x)} \\]

\n

and determine their nature.

\n

There is a $\\var{maxmin1}$ point at ([[0]],[[1]]) and a $\\var{maxmin2}$ point at ([[2]], [[3]]).

\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "abs(a)", "maxValue": "abs(a)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "y1", "maxValue": "y1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "-abs(a)", "maxValue": "-abs(a)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "y2", "maxValue": "y2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}]}], "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}