// Numbas version: finer_feedback_settings {"name": "Partial Fractions: Proper Fractions 6a", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Partial Fractions: Proper Fractions 6a", "tags": [], "metadata": {"description": "

Rewrite the expression $\\frac{nx+k}{(x+a)(x+b)(x+c)}$ as partial fractions in the form $\\frac{A}{x+a}+\\frac{B}{x+b}+\\frac{C}{x+c}$.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Rewrite the following expression as partial fractions:

\n

\\[ \\simplify{({n}x+{k})/((x+{a})(x+{b})(x+{c}))}. \\]

", "advice": "

To express \\[ \\simplify{({n}x+{k})/((x+{a})(x+{b})(x+{c}))} \\] as partial fractions, we want to set this equal to the sum of three fractions with denominators $\\simplify{x+{a}}$, $\\simplify{x+{b}}$, and $\\simplify{x+{c}}$. Since these are all distinct linear factors, this tells us that the numerators will be constants, which we will call $A$, $B$, and $C$:

\n

\\[ \\simplify{({n}x+{k})/((x+{a})(x+{b})(x+{c}))} = \\simplify{A/(x+{a}) + B/(x+{b})+ C/(x+{c})}.\\]

\n

To find the values of $A$, $B$, and $C$, we want to first multiply this equation by the denominator of the left-hand side. This gives

\n

\\[ \\simplify{{n}x+{k}=A(x+{b})(x+{c})+B(x+{a})(x+{c}) + C(x+{a})(x+{b})}.\\]

\n

There are two methods of finding $A$, $B$, and $C$. The first is to choose suitable values for $x$ which will eliminate two of the terms, and the other is to compare the coefficients of each side of the equation. We will cover both methods here.

\n

Method 1:

\n

To find $A$, we can eliminate $B$ and $C$ by setting $x=\\var{-a}$:

\n

\\[ \\simplify{{k}-{n*a}=A{(b-a)(c-a)}} \\implies A=\\simplify[fractionNumbers]{{Asol}}.\\]

\n

Finding $B$ by setting $x=\\var{-b}$:

\n

\\[ \\simplify{{k}-{n*b}=B{(a-b)(c-b)}} \\implies B=\\simplify[fractionNumbers]{{Bsol}}.\\]

\n

Finally, setting $x=\\var{-c}$ we can find C:

\n

\\[ \\simplify{{k}-{n*c}=C{(a-c)(b-c)}} \\implies C=\\simplify[fractionNumbers]{{Csol}}.\\]

\n

Therefore,

\n

{check}

\n

\n

Method 2:

\n

By comparing the coefficients of the $x^2$-terms, $x$-terms and the constant terms we can form a set of simultaneous equations to find $A$, $B$ and $C$.

\n

\\[ \\begin{split} \\simplify{{n}x+{k}} &\\,= \\simplify{A(x+{b})(x+{c})+B(x+{a})(x+{c}) + C(x+{a})(x+{b})} \\\\ &\\,= \\simplify{A(x^2+{b+c}x+{b*c})+B(x^2+{a+c}x+{a*c})+C(x^2+{a+b}x+{a*b})} \\\\ &\\,=\\simplify{(A+B+C)x^2+({b+c}A+{a+c}B+{a+b}C)x+{b*c}A+{a*c}B+{a*b}C} . \\end{split} \\]

\n

\\[ \\begin{split}(x^2)&: \\quad 0 &\\,= \\simplify{A+B+C} \\\\ (x)&: \\quad \\var{n} &\\,= \\simplify{{b+c}A+{a+c}B+{a+b}C} \\\\ (c)&:\\quad \\var{k} &\\,= \\simplify{{b*c}A+{a*c}B+{a*b}C} .\\end{split} \\]

\n

Hence,

\n

\\[A=\\simplify[fractionNumbers]{{Asol}},\\,B=\\simplify[fractionNumbers]{{Bsol}}, \\, C=\\simplify[fractionNumbers]{{Csol}}, \\]

\n

and

\n

{check}

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-6..6)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-6..6 except a)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-6..6 except [a,b])", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "Asol": {"name": "Asol", "group": "Ungrouped variables", "definition": "(k-n*a)/((b-a)*(c-a))", "description": "", "templateType": "anything", "can_override": false}, "Bsol": {"name": "Bsol", "group": "Ungrouped variables", "definition": "(k-n*b)/((a-b)*(c-b))", "description": "", "templateType": "anything", "can_override": false}, "Csol": {"name": "Csol", "group": "Ungrouped variables", "definition": "(k-n*c)/((a-c)*(b-c))", "description": "", "templateType": "anything", "can_override": false}, "check": {"name": "check", "group": "Ungrouped variables", "definition": "if(Asol=round(Asol) and Bsol=round(Bsol),'{sol1}','{sol2}')", "description": "", "templateType": "anything", "can_override": false}, "sol1": {"name": "sol1", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\simplify{({n}x+{k})/((x+{a})(x+{b})(x+{c}))} = \\\\simplify{{Asol}/(x+{a})+{Bsol}/(x+{b})+{Csol}/(x+{c})}.\\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "sol2": {"name": "sol2", "group": "Ungrouped variables", "definition": "\"

\\\\[ \\\\simplify{({n}x+{k})/((x+{a})(x+{b})(x+{c}))} = \\\\simplify[all,fractionNumbers]{{k-n*a}/({(a-b)(a-c)}(x+{a}))+{k-n*b}/({(b-a)(b-c)}(x+{b}))+{k-n*c}/({(c-a)(c-b)}(x+{c}))} .\\\\]

\"", "description": "", "templateType": "long string", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random(-5..5 except [n*a,n*b,n*c])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "n", "k", "Asol", "Bsol", "Csol", "check", "sol1", "sol2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n

[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{k-n*a}/({(a-b)(a-c)}(x+{a}))+{k-n*b}/({(b-a)(b-c)}(x+{b}))+{k-n*c}/({(c-a)(c-b)}(x+{c}))", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`+-$n`?/($n`?*($n`?x+`+-$n`?))+`+-$n`?/($n`?*($n`?x+`+-$n`?))+`+-$n`?/($n`?*($n`?x+`+-$n`?)) `| `+-$n/`+-$n*(`+-$n`?/($n`?*($n`?x+`+-$n`?))+`+-$n`?/($n`?*($n`?x+`+-$n`?))+`+-$n`?/($n`?*($n`?x+`+-$n`?)))", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}]}], "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}