// Numbas version: finer_feedback_settings {"name": "Partial Fractions: Proper Fractions 3c", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Partial Fractions: Proper Fractions 3c", "tags": [], "metadata": {"description": "
Rewrite the expression $\\frac{cx+d}{(x+a)^2}$ as partial fractions in the form $\\frac{A}{x+a}+\\frac{B}{(x+a)^2}$.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Rewrite the following expression as partial fractions:
\n\\[ \\simplify{({c}x+{d})/(x+{a})^2} .\\]
", "advice": "To express\\[ \\simplify{({c}x+{d})/(x+{a})^2} \\] as partial fractions, because we have a repeated linear factor we want to set this equal to the sum of 2 fractions with denominators $\\simplify{x+{a}}$ and $\\simplify{(x+{a})^2}$. The numerators will be constants, which we will call $A$ and $B$:
\n\\[ \\simplify{({c}x+{d})/((x+{a})^2)} = \\simplify{A/(x+{a}) + B/(x+{a})^2}.\\]
\nTo find the values of $A$ and $B$, we want to first multiply this equation by the denominator of the left-hand side. This gives
\n\\[ \\simplify{{c}x+{d}=A(x+{a})+B}.\\]
\n\nBy comparing the coefficients of the $x$-terms and the constant terms we can form a pair of simultaneous equations to find $A$ and $B$:
\n\\[ \\begin{split} \\simplify{{c}x+{d}} &\\,= \\simplify{A(x+{a})+B} \\\\ &\\,= \\simplify{A*x+{a}A+B}. \\end{split} \\]
\n\\[ \\begin{split}&(x):\\quad \\var{c} &\\,= \\simplify{A} \\\\ &(c):\\quad \\var{d} &\\,= \\simplify{{a}A+B} .\\end{split} \\]
\nHence,
\n\\[A=\\var{c},\\,B=\\simplify{{d-a*c}}, \\]
\nand
\n\\[ \\simplify{({c}x+{d})/((x+{a})^2)} = \\simplify{{c}/(x+{a}) + {d-a*c}/(x+{a})^2}\\]
\n", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-9..9 except 0)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-9..9 except c*a)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "gcd(c,d)=1", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n[[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{c}/(x+{a}) + {{d-a*c}}/(x+{a})^2", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}]}], "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}