// Numbas version: finer_feedback_settings {"name": "Logarithms: Solving equations 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Logarithms: Solving equations 3", "tags": [], "metadata": {"description": "
Solve for $x$: $\\log(ax+b)-\\log(cx+d)=s$
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "\nSolve the following equation for $x$.
\n\\[\\simplify[std]{log({a1}x+{b1})-log({c1}x+{d1})={e1}}\\]
\n ", "advice": "\nFirst use one of the logarith laws which states (for logarithms to any base)
\n\\[\\log(a)-\\log(b)=\\log\\left(\\frac{a}{b}\\right)\\]
\nSo the equation can be written as:
\n\\[\\log_{10}\\left(\\simplify[std]{({a1}x+{b1})/({c1}x+{d1})}\\right)=\\var{e1}\\]
Now exponentiate both sides to get:
\\[\\simplify[std,!otherNumbers]{({a1}x+{b1})/({c1}x+{d1})}=10^{\\var{e1}} \\Rightarrow \\simplify[std,!otherNumbers]{{a1}x+{b1}=10^{e1}({c1}x+{d1})}\\]
Collect together terms in $x$ on the left and everything else on the right of the equation gives:
\\[\\simplify[std,!otherNumbers]{x({a1}-10^{e1}*{c1})=10^{e1}*{d1}-{b1}}\\]
Finally rearrange to get:
\\[\\simplify[std]{x=(10^{e1}*{d1}-{b1})/({a1}-10^{e1}*{c1})={10^e1*d1-b1}/{a1-10^e1*c1}}\\]
which to 3 decimal places evaluates to
\\[x=\\var{ans}.\\]
Input the solution for $x$ here:
\n$x=\\;\\;$ [[0]]
\nInput your answer to 3 decimal places.
\n ", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans-tol", "maxValue": "ans+tol", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Wan Mekwi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4058/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Wan Mekwi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4058/"}]}