// Numbas version: finer_feedback_settings {"name": "Logarithms: Solving equations 4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Logarithms: Solving equations 4", "tags": ["equations solved by using logarithms", "laws of logarithms", "logarithm laws", "logarithm rules", "logarithmic expressions", "logarithms", "solving equations by taking logarithms", "solving logarithmic equations"], "advice": "

Both parts of this question can be solved in a similar way, by taking logarithms of both sides of each equation.

\n

a)

\n

Taking logs (to the base 10 in this case – but any base will do) of both sides of

\n

\\[\\var{n}^{\\simplify{{a1}*x+{b1}}}=\\var{m}^{\\var{c1}x}\\]

\n

gives on using the rule $\\log(a^b)=b\\log(a)$:

\n

\\[\\begin{eqnarray*} \\simplify[std]{({a1}x+{b1})log({n})}&=&\\simplify[std]{{c1}*x*log({m})}\\\\ \\Rightarrow\\simplify[std]{x({a1}*log({n})-{c1}*log({m}))} &=&\\var{-b1}\\log(\\var{n})\\\\ \\Rightarrow x&=&\\simplify[std]{({-b1}*log({n}))/({a1}log({n})-{c1}*log({m}))}\\\\ &=& \\var{ans1}\\mbox{ to 3 decimal places} \\end{eqnarray*} \\]

\n

b)

\n

Similarly, taking logs of both sides of:
\\[\\var{a2}^{\\var{b2}x^2}=\\var{c2}^{\\var{d2}x}\\]

\n

gives:

\n

\\[ \\simplify[std]{({b2}x^2)log({a2})}=\\simplify[std]{{d2}*x*log({c2})} \\Rightarrow \\simplify[std]{x({b2}*log({a2})x-{d2}*log({c2}))} =0\\]

\n

and so the solutions are:

\n

1. $x=0$

\n

or

\n

2. $\\displaystyle x=\\simplify[std,!fractionNumbers]{({d2}*log({c2}))/({b2}*log({a2})) = {ans2}}$ to 3 decimal places.

", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "\n

\\[\\var{n}^{\\simplify{{a1}*x+{b1}}}=\\var{m}^{\\var{c1}x}\\]

\n

$x=\\;\\;$[[0]].

\n

Enter your answer to 3 decimal places.

\n ", "gaps": [{"minvalue": "{ans1}", "type": "numberentry", "maxvalue": "{ans1}", "marks": 1.0, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}, {"prompt": "\n

\\[\\var{a2}^{\\var{b2}x^2}=\\var{c2}^{\\var{d2}x}\\]

\n

$x=\\;\\;$[[0]] $\\;\\;\\;$ (Enter the smallest value of $x$ here).

\n

$x=\\;\\;$[[1]] $\\;\\;\\;$ (Enter the largest value of $x$ here).

\n

Enter your answers to 3 decimal places.

\n ", "gaps": [{"minvalue": 0.0, "type": "numberentry", "maxvalue": 0.0, "marks": 0.5, "showPrecisionHint": false}, {"minvalue": "ans2", "type": "numberentry", "maxvalue": "ans2", "marks": 1.5, "showPrecisionHint": false}], "type": "gapfill", "marks": 0.0}], "extensions": [], "statement": "

Find all values of $x$ that satisfy the following equations:

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"tc2": {"definition": "random(2..9)", "name": "tc2"}, "s3": {"definition": "random(1,-1)", "name": "s3"}, "ans1": {"definition": "precround(tans1,3)", "name": "ans1"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "m": {"definition": "if(tm=n,17,tm)", "name": "m"}, "d2": {"definition": "random(2..9)", "name": "d2"}, "n": {"definition": "random(2,3,5,7,11,13)", "name": "n"}, "a1": {"definition": "s1*random(1..9)", "name": "a1"}, "tm": {"definition": "random(2,3,5,7,11,13)", "name": "tm"}, "b1": {"definition": "random(1..9)", "name": "b1"}, "b2": {"definition": "random(2..9)", "name": "b2"}, "c2": {"definition": "if(tc2=a2,tc2+1,tc2)", "name": "c2"}, "c1": {"definition": "s3*random(2..9)", "name": "c1"}, "tans1": {"definition": "-b1*log(n)/(a1*log(n)-c1*log(m))", "name": "tans1"}, "ans2": {"definition": "precround(tans2,3)", "name": "ans2"}, "a2": {"definition": "random(2..9)", "name": "a2"}, "tans2": {"definition": "d2*log(c2)/(b2*log(a2))", "name": "tans2"}}, "metadata": {"notes": "\n \t\t

2/06/2012:

\n \t\t

Added tags.

\n \t\t

Improved display.

\n \t\t

Forced solution in second part to be accurate to 3 decimal places with no tolerance.

\n \t\t

 19/07/2012:

\n \t\t

Added description.

\n \t\t

Checked calculation.

\n \t\t

25/07/2012:

\n \t\t

Added tags.

\n \t\t

Corrected a typo.

\n \t\t

In the Advice section moved \\Rightarrow so that it is at the beginning of the line instead of the end of the previous line.

\n \t\t

Question appears to be working correctly.

\n \t\t

 

\n \t\t

 

\n \t\t", "description": "

Solve for $x$ each of the following equations: $n^{ax+b}=m^{cx}$ and $p^{rx^2}=q^{sx}$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Wan Mekwi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4058/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Wan Mekwi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4058/"}]}