// Numbas version: finer_feedback_settings {"name": "Vollst\u00e4ndige Induktion", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Vollst\u00e4ndige Induktion", "tags": [], "metadata": {"description": "

Ein einfacher, geführter Induktionsbeweis

", "licence": "Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International"}, "statement": "

Zu zeigen: Für alle $n\\in\\mathbb{N}$ gilt: $\\,\\var{a}^{n+1} + \\var{a + 1}^{2n−1}$ ist durch $\\var{a^2 + a + 1}$ teilbar.

\n

", "advice": "

Induktionsanfang: Wir setzen 1 für $n$ ein: $A(1):\\ \\,\\var{a}^{1+1} + \\var{a + 1}^{2\\cdot 1−1}=\\var{a}^{2} + \\var{a + 1}=\\var{a1}$, was offensichtlich durch $\\var{a1}$ teilbar ist.

\n
\n

Induktionsbehauptung: Wir setzen zunächst $(n+1)$ für $n$ ein: $A(n+1):\\ \\,\\var{a}^{(n+1)+1} + \\var{a + 1}^{2\\cdot(n+1)−1}=\\var{a}^{n+2} + \\var{a + 1}^{2n+1}$

\n

Die Umformungsschritte nutzen dann die Potenzrechenregel $a^{(b+c)}=a^b+a^c$ und das Distibutivgesetz $(a+b)\\cdot c=a\\cdot c+b\\cdot c$ 

\n

Womit sich ergibt:

\n

$A(n+1):\\ \\,\\var{a}^{n+2} +\\var{a + 1}^{2n+1}=\\var{k1}\\cdot\\,\\var{a}^{n+1} +\\var{k2}\\cdot\\,\\var{a + 1}^{2n−1}$

\n

$=\\var{k1}\\cdot\\,\\var{a}^{n+1} +\\var{k1}\\cdot\\,\\var{a + 1}^{2n−1}+\\var{k2-k1}\\cdot\\,\\var{a + 1}^{2n−1}=\\var{k3}\\cdot\\left(\\var{a}^{n+1} + \\var{a + 1}^{2n−1}\\right)+\\var{k4}\\cdot\\,\\var{a + 1}^{2n−1}$

\n

Der erste Summand ist gemäß Induktionsvoraussetzung durch $\\var{a1}$ teilbar, der zweite Summand, weil er ein Vielfaches von $\\var{a1}$ ist. Die Summe ist dann auch durch $\\var{a1}$ teilbar.

", "rulesets": {}, "extensions": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "a^2+a+1", "description": "", "templateType": "anything"}, "k2": {"name": "k2", "group": "Ungrouped variables", "definition": "(a+1)^2", "description": "", "templateType": "anything"}, "k1": {"name": "k1", "group": "Ungrouped variables", "definition": "a", "description": "", "templateType": "anything"}, "k3": {"name": "k3", "group": "Ungrouped variables", "definition": "a", "description": "", "templateType": "anything"}, "k4": {"name": "k4", "group": "Ungrouped variables", "definition": "a^2+a+1", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "a1", "k2", "k1", "k3", "k4"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Induktionsanfang $A(1)$:

\n

Durch Einsetzen ergibt sich: [[0]], was ein ganzzahliges Vielfaches von $\\var{a^2 + a + 1}$ ist.

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "IA", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "a1", "maxValue": "a1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain-eu"], "correctAnswerStyle": "plain-eu"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Induktionsschluss $A(n)\\Rightarrow A(n+1)$:

\n

Es ist zu zeigen, dass unter der Induktionsvoraussetzung

\n

$A(n):\\ \\,\\var{a}^{n+1} + \\var{a + 1}^{2n−1}$ ist durch $\\var{a^2 + a + 1}$ teilbar (für beliebiges aber festes $n$)

\n

die Induktionsbehauptung

\n

$A(n+1):\\,$ [[0]] ist durch $\\var{a^2 + a + 1}$ teilbar 

\n

richtig ist.

\n

Wir formen jetzt den Term in der Aussage $A(n+1)$ so um, dass wir den Term aus der Aussage $A(n)$ wieder erkennen, dazu heben wir wie folgt heraus:

\n

$A(n+1):\\,$ [[0]]$=$[[1]]$\\cdot\\,\\var{a}^{n+1} +$[[2]]$\\cdot\\,\\var{a + 1}^{2n−1}$

\n

als nächstes müssen wir den gesamten Term $\\var{a}^{n+1} + \\var{a + 1}^{2n−1}$ herausheben:

\n

$\\qquad\\qquad=$[[3]]$\\cdot\\left(\\var{a}^{n+1} + \\var{a + 1}^{2n−1}\\right)+$[[4]]$\\cdot\\,\\var{a + 1}^{2n−1}$

\n

Dieser Term ist durch $\\var{a^2 + a + 1}$ teilbar, weil es der erste Summand wegen der Induktionsvoraussetzung ist, warum es auch der zweite ist, erkennen Sie, wenn Sie korrekt herausgehoben haben. Sind zwei Summanden durch eine Zahl teilbar, dann ist es immer auch deren Summe.

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "IB", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a}^(n+2) + {a + 1}^(2n+1)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "n", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "k1", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "k1", "maxValue": "k1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["eu", "plain-eu"], "correctAnswerStyle": "eu"}, {"type": "numberentry", "useCustomName": true, "customName": "k2", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "k2", "maxValue": "k2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["eu", "plain-eu"], "correctAnswerStyle": "eu"}, {"type": "numberentry", "useCustomName": true, "customName": "k3", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "k3", "maxValue": "k3", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["eu", "plain-eu"], "correctAnswerStyle": "eu"}, {"type": "numberentry", "useCustomName": true, "customName": "k4", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "k4", "maxValue": "k4", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["eu", "plain-eu"], "correctAnswerStyle": "eu"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}], "resources": []}]}], "contributors": [{"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}]}