// Numbas version: finer_feedback_settings {"name": "SIR questions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "SIR questions", "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "
The path-loss model for the received power at a mobile user in a cell is given by:
\n$P_{RX}=P_{TX}d^{-v}$
\nwhere $P_{RX}$ is received power, $P_{TX}$ is the transmitted power from all base stations, $d$ is the distance from the transmitter to the receiver and $v$ is the path-loss exponent.
", "advice": "Part A:
\nTotal signal power:
\n$S=P_{TX}d^{-v}$
\nTotal received power:
\n$I=\\sum^{M}_{i=1}P_{TX}d_i^{-v}=MP_{TX}X^{-v}$
\nTherefore $S/I$:
\n$\\frac{S}{I}=\\frac{P_{TX}d^{-v}}{MP_{TX}X^{-v}}=\\frac{1}{M}\\left(\\frac{X}{d}\\right)^{-4}=\\frac{1}{M}\\left(\\frac{X}{d}\\right)^{-4}$
\nPart B:
\n$\\frac{S}{I}_{linear}=10^{\\frac{SNR_{dB}}{10}}=57.54$
\n$\\frac{S}{I}=\\frac{1}{M}\\left(\\frac{X}{d}\\right)^{-4}$
\n$\\frac{X}{d}\\longrightarrow$ co-channel re-use distance $\\longrightarrow\\frac{X}{d}=\\sqrt{3K}$
\n$\\frac{S}{I}=\\frac{1}{M}\\left(\\sqrt{3K}\\right)^v=\\frac{1}{M}\\left(3K\\right)^{\\frac{2}{v}}$
\nRearranging for $K$:
\n$K=\\frac{1}{3}\\left(\\frac{MS}{I}\\right)^{\\frac{2}{v}}=\\frac{1}{3}\\left(6\\cdot57.54\\right)^{0.5}=6.19$ clusters, therefore minimum cluster size, $K=7$.
", "rulesets": {}, "extensions": [], "variables": {"K": {"name": "K", "group": "Ungrouped variables", "definition": "7", "description": "", "templateType": "anything"}, "SIR": {"name": "SIR", "group": "Ungrouped variables", "definition": "17.6", "description": "", "templateType": "anything"}, "v": {"name": "v", "group": "Ungrouped variables", "definition": "4", "description": "", "templateType": "anything"}, "M": {"name": "M", "group": "Ungrouped variables", "definition": "6", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["K", "SIR", "v", "M"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "If a mobile user also receives signals from $M$ interferers that are all at a distance $X$ from the mobile user, derive the signal-to-interference ratio ($\\frac{S}{I}$) of the mobile user, given a distance $d$ and that all interferers have the same transmission power, $P_{TX}$, and path-loss exponent, $v$.
\n\nSIR=[[0]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "SIR", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(1/M)(X/d)^v", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": [{"name": "d", "value": ""}, {"name": "m", "value": ""}, {"name": "v", "value": ""}, {"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "For satisfactory performance of an arbitrary cellular system, a signal-to-interference ratio of $17.6$ dB is required. Find the minimum cluster size, $K$, needed to achieve this, considering $v=4$ and there are $M=6$ equidistant interferers.
\nK=[[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "7", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Paul Anthony Haigh", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9407/"}], "resources": []}]}], "contributors": [{"name": "Paul Anthony Haigh", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9407/"}]}