// Numbas version: finer_feedback_settings {"name": "Salaminische Tafel (ohne L\u00f6sungsanzeige)", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Salaminische Tafel (ohne L\u00f6sungsanzeige)", "tags": [], "metadata": {"description": "
Darstellen von Zahlen an einem Felderabakus (noch ohne Anzeige der Lösung)
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "An der Salaminischen Tafel (ca. 500 v. Chr., auch als griechischer Felderabakus bezeichnet) können bis zu drei Zahlen dargestellt werden:
\nJe eine Zahl links oberhalb und links unterhalb der horizontalen Linie und eine rechts.
\nAuf den vertikalen Linien liegen dabei die Einer (Zehner, Hunderter, usw.), zwischen den Linien die Fünfer (Fünfziger, Fünfhunderter, usw.).
", "advice": "WIP - Bislang nur Richtigkeit
", "rulesets": {}, "extensions": ["geogebra"], "variables": {"app": {"name": "app", "group": "Setup", "definition": "geogebra_applet('https://www.geogebra.org/m/ykpkawkw')", "description": "", "templateType": "anything"}, "a_rand": {"name": "a_rand", "group": "Setup", "definition": "[random(1..4),random(1..3),random(2..4),random(0..1)]", "description": "", "templateType": "anything"}, "a_expo": {"name": "a_expo", "group": "Setup", "definition": "[random(1,10),random(1,10),random(1,10),random(1,10)]", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Setup", "definition": "if(a_rand[0]=1,5*a_expo[0],a_rand[0]*a_expo[0])+if(a_rand[1]=1,5*a_expo[1],a_rand[1]*a_expo[1])*10+if(a_rand[2]=1,5*a_expo[2],a_rand[2]*a_expo[2])*100+if(a_rand[3]=1,5*a_expo[3],a_rand[3]*a_expo[3])*1000", "description": "", "templateType": "anything"}, "b_rand": {"name": "b_rand", "group": "Setup", "definition": "[random(1..3),random(1..2),random(1..4)]", "description": "", "templateType": "anything"}, "b_expo": {"name": "b_expo", "group": "Setup", "definition": "[random(1,10),random(1,10),random(1,10)]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Setup", "definition": "if(b_rand[0]=1,5*b_expo[0],b_rand[0]*b_expo[0])+if(b_rand[1]=1,5*b_expo[1],b_rand[1]*b_expo[1])*10+if(b_rand[2]=1,5*b_expo[2],b_rand[2]*b_expo[2])*100", "description": "", "templateType": "anything"}, "app2": {"name": "app2", "group": "Setup", "definition": "geogebra_applet('https://www.geogebra.org/m/rp8bapvy')", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Setup", "variables": ["app", "a_rand", "a_expo", "a", "b_rand", "b_expo", "b", "app2"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "extension", "useCustomName": false, "customName": "", "marks": 1, "scripts": {"constructor": {"script": "this.marks=4", "order": "after"}}, "customMarkingAlgorithm": "studenta:\n value(app,\"a\")\n\nstudentb:\n value(app,\"b\")\n\nmark:\n if(studenta=a,add_credit(1/2,'Obere Zahl korrekt'),negative_feedback(\"Obere Zahl falsch: $\\\\var{latex(app,'a')}$\")); \n if(studentb=b,add_credit(1/2,'Untere Zahl korrekt'),negative_feedback(\"Untere Zahl falsch: $\\\\var{latex(app,'b')}$.\"))\n \ninterpreted_answer:\n vector(studenta,studentb)", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "{app}
\nStellen Sie oben links die Zahl {a} und unten links die Zahl {b} dar, indem Sie die entsprechende Anzahl Punkte von oben auf bzw. zwischen die Linien der Salaminischen Tafel verschieben!
"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}]}]}], "contributors": [{"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}]}