// Numbas version: finer_feedback_settings {"name": "Salaminische Tafel", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Salaminische Tafel", "tags": [], "metadata": {"description": "

Darstellen von Zahlen an einem Felderabakus (noch ohne Anzeige der Lösung)

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

An der Salaminischen Tafel (ca. 500 v. Chr., auch als griechischer Felderabakus bezeichnet) können bis zu drei Zahlen dargestellt werden:

\n

Je eine Zahl links oberhalb und links unterhalb der horizontalen Linie und eine rechts.

\n

Auf den vertikalen Linien liegen dabei die Einer (Zehner, Hunderter, usw.), zwischen den Linien die Fünfer (Fünfziger, Fünfhunderter, usw.).

", "advice": "

Lösung: {a} oben, {b} unten:

\n

{app2}

", "rulesets": {}, "extensions": ["geogebra"], "variables": {"app": {"name": "app", "group": "Setup", "definition": "geogebra_applet('https://www.geogebra.org/m/ykpkawkw')", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Setup", "definition": "random(100..899)*10+random(1..9)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Setup", "definition": "random(1..9)*100+random(0,5)*10+random(0..9)", "description": "", "templateType": "anything"}, "app2": {"name": "app2", "group": "Setup", "definition": "geogebra_applet('https://www.geogebra.org/m/rp8bapvy',defs)", "description": "", "templateType": "anything"}, "a_sol": {"name": "a_sol", "group": "Points", "definition": "[floor(mod(a,10000)/1000),floor(mod(a,1000)/100),floor(mod(a,100)/10),mod(a,10)]", "description": "", "templateType": "anything"}, "b_sol": {"name": "b_sol", "group": "Points", "definition": "[floor(mod(b,1000)/100),floor(mod(b,100)/10),mod(b,10)]", "description": "", "templateType": "anything"}, "a_3": {"name": "a_3", "group": "Points", "definition": "switch(a_sol[3]=0,[],\n a_sol[3]=1,[['S_1',vector(13,5)]],\n a_sol[3]=2,[['S_1',vector(13,5)],['S_2',vector(13,4)]],\n a_sol[3]=3,[['S_1',vector(13,5)],['S_2',vector(13,4)],['S_3',vector(13,3)]],\n a_sol[3]=4,[['S_1',vector(13,5)],['S_2',vector(13,4)],['S_3',vector(13,3)],['S_4',vector(13,2)]],\n a_sol[3]=5,[['S_1',vector(12,5)]],\n a_sol[3]=6,[['S_1',vector(12,5)],['S_2',vector(13,5)]],\n a_sol[3]=7,[['S_1',vector(12,5)],['S_2',vector(13,5)],['S_3',vector(13,4)]],\n a_sol[3]=8,[['S_1',vector(12,5)],['S_2',vector(13,5)],['S_3',vector(13,4)],['S_4',vector(13,3)]],\n a_sol[3]=9,[['S_1',vector(12,5)],['S_2',vector(13,5)],['S_3',vector(13,4)],['S_4',vector(13,3)],['S_5',vector(13,2)]],\n 0)", "description": "", "templateType": "anything"}, "a_2": {"name": "a_2", "group": "Points", "definition": "switch(a_sol[2]=0,[],\n a_sol[2]=1,[['S_6',vector(11,5)]],\n a_sol[2]=2,[['S_6',vector(11,5)],['S_7',vector(11,4)]],\n a_sol[2]=3,[['S_6',vector(11,5)],['S_7',vector(11,4)],['S_8',vector(11,3)]],\n a_sol[2]=4,[['S_6',vector(11,5)],['S_7',vector(11,4)],['S_8',vector(11,3)],['S_9',vector(11,2)]],\n a_sol[2]=5,[['S_6',vector(10,5)]],\n a_sol[2]=6,[['S_6',vector(10,5)],['S_7',vector(11,5)]],\n a_sol[2]=7,[['S_6',vector(10,5)],['S_7',vector(11,5)],['S_8',vector(11,4)]],\n a_sol[2]=8,[['S_6',vector(10,5)],['S_7',vector(11,5)],['S_8',vector(11,4)],['S_9',vector(11,3)]],\n a_sol[2]=9,[['S_6',vector(10,5)],['S_7',vector(11,5)],['S_8',vector(11,4)],['S_9',vector(11,3)],['S_9',vector(11,2)]],\n 0)", "description": "", "templateType": "anything"}, "defs": {"name": "defs", "group": "Points", "definition": "a_3+a_2+a_1+a_0+b_2+b_1+b_0", "description": "", "templateType": "anything"}, "a_1": {"name": "a_1", "group": "Points", "definition": "switch(a_sol[1]=0,[],\n a_sol[1]=1,[['S_10',vector(9,5)]],\n a_sol[1]=2,[['S_10',vector(9,5)],['S_11',vector(9,4)]],\n a_sol[1]=3,[['S_10',vector(9,5)],['S_11',vector(9,4)],['S_12',vector(9,3)]],\n a_sol[1]=4,[['S_10',vector(9,5)],['S_11',vector(9,4)],['S_12',vector(9,3)],['S_13',vector(9,2)]],\n a_sol[1]=5,[['S_10',vector(8,5)]],\n a_sol[1]=6,[['S_10',vector(8,5)],['S_11',vector(9,5)]],\n a_sol[1]=7,[['S_10',vector(8,5)],['S_11',vector(9,5)],['S_12',vector(9,4)]],\n a_sol[1]=8,[['S_10',vector(8,5)],['S_11',vector(9,5)],['S_12',vector(9,4)],['S_13',vector(9,3)]],\n a_sol[1]=9,[['S_10',vector(8,5)],['S_11',vector(9,5)],['S_12',vector(9,4)],['S_13',vector(9,3)],['S_14',vector(9,2)]],\n 0)", "description": "", "templateType": "anything"}, "a_0": {"name": "a_0", "group": "Points", "definition": "switch(a_sol[0]=0,[],\n a_sol[0]=1,[['S_15',vector(7,5)]],\n a_sol[0]=2,[['S_15',vector(7,5)],['S_16',vector(7,4)]],\n a_sol[0]=3,[['S_15',vector(7,5)],['S_16',vector(7,4)],['S_17',vector(7,3)]],\n a_sol[0]=4,[['S_15',vector(7,5)],['S_16',vector(7,4)],['S_17',vector(7,3)],['S_18',vector(7,2)]],\n a_sol[0]=5,[['S_15',vector(6,5)]],\n a_sol[0]=6,[['S_15',vector(6,5)],['S_16',vector(7,5)]],\n a_sol[0]=7,[['S_15',vector(6,5)],['S_16',vector(7,5)],['S_17',vector(7,4)]],\n a_sol[0]=8,[['S_15',vector(6,5)],['S_16',vector(7,5)],['S_17',vector(7,4)],['S_18',vector(7,3)]],\n a_sol[0]=9,[['S_15',vector(6,5)],['S_16',vector(7,5)],['S_17',vector(7,4)],['S_18',vector(7,3)],['S_19',vector(7,2)]],\n 0)", "description": "", "templateType": "anything"}, "b_2": {"name": "b_2", "group": "Points", "definition": "switch(b_sol[2]=0,[],\n b_sol[2]=1,[['S_20',vector(13,-5)]],\n b_sol[2]=2,[['S_20',vector(13,-5)],['S_21',vector(13,-4)]],\n b_sol[2]=3,[['S_20',vector(13,-5)],['S_21',vector(13,-4)],['S_22',vector(13,-3)]],\n b_sol[2]=4,[['S_20',vector(13,-5)],['S_21',vector(13,-4)],['S_22',vector(13,-3)],['S_23',vector(13,-2)]],\n b_sol[2]=5,[['S_20',vector(12,-5)]],\n b_sol[2]=6,[['S_20',vector(12,-5)],['S_21',vector(13,-5)]],\n b_sol[2]=7,[['S_20',vector(12,-5)],['S_21',vector(13,-5)],['S_22',vector(13,-4)]],\n b_sol[2]=8,[['S_20',vector(12,-5)],['S_21',vector(13,-5)],['S_22',vector(13,-4)],['S_23',vector(13,-3)]],\n b_sol[2]=9,[['S_20',vector(12,-5)],['S_21',vector(13,-5)],['S_22',vector(13,-4)],['S_23',vector(13,-3)],['S_24',vector(13,-2)]],\n 0)", "description": "", "templateType": "anything"}, "b_0": {"name": "b_0", "group": "Points", "definition": "switch(b_sol[0]=0,[],\n b_sol[0]=1,[['S_25',vector(9,-5)]],\n b_sol[0]=2,[['S_25',vector(9,-5)],['S_26',vector(9,-4)]],\n b_sol[0]=3,[['S_25',vector(9,-5)],['S_26',vector(9,-4)],['S_27',vector(9,-3)]],\n b_sol[0]=4,[['S_25',vector(9,-5)],['S_26',vector(9,-4)],['S_27',vector(9,-3)],['S_28',vector(9,-2)]],\n b_sol[0]=5,[['S_25',vector(8,-5)]],\n b_sol[0]=6,[['S_25',vector(8,-5)],['S_26',vector(9,-5)]],\n b_sol[0]=7,[['S_25',vector(8,-5)],['S_26',vector(9,-5)],['S_27',vector(9,-4)]],\n b_sol[0]=8,[['S_25',vector(8,-5)],['S_26',vector(9,-5)],['S_27',vector(9,-4)],['S_28',vector(9,-3)]],\n b_sol[0]=9,[['S_25',vector(8,-5)],['S_26',vector(9,-5)],['S_27',vector(9,-4)],['S_28',vector(9,-3)],['S_29',vector(9,-2)]],\n 0)", "description": "", "templateType": "anything"}, "b_1": {"name": "b_1", "group": "Points", "definition": "switch(b_sol[1]=0,[],\n b_sol[1]=1,[['S_30',vector(11,-5)]],\n b_sol[1]=5,[['S_30',vector(10,-5)]],\n 0)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Setup", "variables": ["app", "a", "b", "app2"]}, {"name": "Points", "variables": ["defs", "a_sol", "b_sol", "a_3", "a_2", "a_1", "a_0", "b_2", "b_0", "b_1"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "extension", "useCustomName": false, "customName": "", "marks": 1, "scripts": {"constructor": {"script": "this.marks=4", "order": "after"}}, "customMarkingAlgorithm": "studenta:\n value(app,\"a\")\n\nstudentb:\n value(app,\"b\")\n\nmark:\n if(studenta=a,add_credit(1/2,'Obere Zahl korrekt'),negative_feedback(\"Obere Zahl falsch: $\\\\var{latex(app,'a')}$\")); \n if(studentb=b,add_credit(1/2,'Untere Zahl korrekt'),negative_feedback(\"Untere Zahl falsch: $\\\\var{latex(app,'b')}$.\"))\n \ninterpreted_answer:\n vector(studenta,studentb)", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Bitte etwas Geduld beim Laden des Applets.

\n

{app}

\n

Stellen Sie oben links die Zahl {a} und unten links die Zahl {b} dar, indem Sie die entsprechende Anzahl Punkte von oben auf bzw. zwischen die Linien der Salaminischen Tafel verschieben!

"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}]}]}], "contributors": [{"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}]}