// Numbas version: finer_feedback_settings {"name": "Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Product rule", "tags": ["Calculus", "Steps", "calculus", "derivative of a polynomial", "derivative of a product", "differentiation", "product rule", "steps"], "advice": "\n \n \n

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = x ^ {m}}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {m}x ^ {m -1}}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({a} * x+{b})^{n}} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {n*a} * ({a} * x+{b})^{n-1}}\\]

\n \n \n \n

Hence on substituting into the product rule above we get:

\n \n \n \n

\\[\\simplify[std]{Diff(f,x,1) = {m}x ^ {m-1} * ({a} * x+{b})^{n}+{n*a}x^{m} * ({a} * x+{b})^{n-1}=x^{m-1}({a}x+{b})^{n-1}({m*a+n*a}x+{m*b})}\\]
So $\\simplify[std]{g(x)= {m*a+n*a}x+{m*b}}$

\n \n \n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}]}, "parts": [{"stepspenalty": 0.0, "prompt": "\n

$\\simplify[std]{f(x) = x ^ {m} * ({a} * x+{b})^{n}}$

\n

$g(x)=\\;$[[0]]

\n

Clicking on Show steps gives you more information, you will not lose any marks by doing so.

\n ", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "{m*a+n*a}x+{m*b}", "type": "jme"}], "steps": [{"prompt": "

The product rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u * v,x,1) = u * Diff(v,x,1) + v * Diff(u,x,1)}\\]

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "extensions": [], "statement": "

Differentiate the following function $f(x)$ using the product rule. The answer will be of the form
\\[\\simplify[std]{x^{m-1}({a}x+{b})^{n-1}g(x)}\\] for a polynomial $g(x)$. You have to find $g(x)$

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "m": {"definition": "random(3..9)", "name": "m"}, "n": {"definition": "random(3..9)", "name": "n"}}, "metadata": {"notes": "\n \t\t

31/07/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Problem with steps to be addressed. Now resolved.

\n \t\t

Clicking on Show steps does not lose any marks.

\n \t\t", "description": "\n \t\t

Differentiate $ x ^ m(ax+b)^n$ using the product rule. The answer will be of the form $x^{m-1}(ax+b)^{n-1}g(x)$ for a polynomial $g(x)$. Find $g(x)$.

\n \t\t

 

\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}