// Numbas version: finer_feedback_settings {"name": "Griechische Zahlzeichen", "extensions": [], "custom_part_types": [], "resources": [["question-resources/greeknumbers.png", "/srv/numbas/media/question-resources/greeknumbers.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Griechische Zahlzeichen", "tags": [], "metadata": {"description": "

Milesisches Zahlzeichensystem

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Unten ist eine Zahl in einem der beiden antiken griechischen Zahlzeichensysteme, dem sogenannten milesischen oder alphabetischen Zahlzeichensystem dargestellt, in dem griechische Buchstaben als Ziffern/Zahlen verwendet werden.

\n

$\\begin{matrix}\\var{latex(T2[digits[0]])}\\var{latex(O2[digits[1]])}\\\\\\LARGE{\\mathrm{M}}&\\LARGE{'\\var{latex(O[digits[2]])}\\var{latex(H[digits[3]])}\\var{latex(T[digits[4]])}\\var{latex(O[digits[5]])}}\\end{matrix}$

\n

\n

", "advice": "

Über dem $\\mathrm{M}$ stehen die Zehntausender und Hunderttausender, also $\\var{latex(T2[digits[0]])}\\var{latex(O2[digits[1]])}$ ergibt $\\var{digits[0]*100000+digits[1]*10000}$.

\n

Dahinter folgen mit $'\\var{latex(O[digits[2]])}\\var{latex(H[digits[3]])}\\var{latex(T[digits[4]])}\\var{latex(O[digits[5]])}$ Tausender, Hunder, Zehner und Einer. Hier ergibt sich $\\var{digits[2]*1000+digits[3]*100+digits[4]*10+digits[5]}$.

\n

Das ergibt als Zahl dann insgesamt $\\var{number}$

\n

Tabelle der Zahlzeichen:

\n

\n

", "rulesets": {}, "extensions": [], "variables": {"O": {"name": "O", "group": "Ungrouped variables", "definition": "['0','\\\\mathrm\\{A\\}','\\\\mathrm\\{B\\}','\\\\Gamma','\\\\Delta','\\\\mathrm\\{E\\}','6','\\\\mathrm\\{Z\\}','\\\\mathrm\\{H\\}','\\\\Theta']\n", "description": "", "templateType": "anything"}, "T": {"name": "T", "group": "Ungrouped variables", "definition": "['0','\\\\mathrm\\{I\\}','\\\\mathrm\\{K\\}','\\\\Lambda','\\\\mathrm\\{M\\}','\\\\mathrm\\{N\\}','\\\\Xi','\\\\mathrm\\{O\\}','\\\\Pi','90']\n", "description": "", "templateType": "anything"}, "H": {"name": "H", "group": "Ungrouped variables", "definition": "['0','\\\\mathrm\\{P\\}','\\\\Sigma','\\\\mathrm\\{T\\}','\\\\Upsilon','\\\\Phi','\\\\mathrm\\{X\\}','\\\\Psi','\\\\Omega','900']\n", "description": "", "templateType": "anything"}, "digits": {"name": "digits", "group": "Ungrouped variables", "definition": "[random(1..8),random(1,2,3,4,5,7,8,9),random(1,2,3,4,5,7,8,9),random(1..8),random(1..8),random(1,2,3,4,5,7,8,9)]", "description": "", "templateType": "anything"}, "number": {"name": "number", "group": "Ungrouped variables", "definition": "digits[0]*10^5+digits[1]*10^4+digits[2]*10^3+digits[3]*10^2+digits[4]*10^1+digits[5]*10^0", "description": "", "templateType": "anything"}, "O2": {"name": "O2", "group": "Ungrouped variables", "definition": "['0','\\\\alpha','\\\\beta','\\\\gamma','\\\\delta','\\\\epsilon','6','\\\\zeta','\\\\eta','\\\\theta']", "description": "", "templateType": "anything"}, "T2": {"name": "T2", "group": "Ungrouped variables", "definition": "['0','\\\\iota','\\\\kappa','\\\\lambda','\\\\mu','\\\\nu','\\\\xi','\\\\mathrm\\{o\\}','\\\\pi','90']", "description": "", "templateType": "anything"}, "H2": {"name": "H2", "group": "Ungrouped variables", "definition": "['0','\\\\rho','\\\\sigma','\\\\tau','\\\\upsilon','\\\\varphi','\\\\chi','\\\\psi','\\\\omega','900']", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["O", "T", "H", "digits", "number", "O2", "T2", "H2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Um welche Zahl handelt es sich?

", "minValue": "{number}", "maxValue": "{number}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": 0, "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["eu", "plain-eu"], "correctAnswerStyle": "plain-eu"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}]}]}], "contributors": [{"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}]}