// Numbas version: finer_feedback_settings {"name": "Combining algebraic fractions 0", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Combining algebraic fractions 0", "tags": ["algebra", "algebraic fractions", "algebraic manipulation", "combining algebraic fractions", "common denominator"], "advice": "\n
We have:
\n\\[\\simplify[std]{{a} + ({c} / ({a2}*x + {d})) = ({a} * ({a2}*x + {d}) + {c}) / (({a2}*x + {d})) = ({a*a2} * x + {a * d + c}) / ( ({a2}*x + {d}))}\\]
\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 1.0, "prompt": "Express \\[\\simplify[std]{{a} + ({c} / ({a2}x + {d}))}\\] as a single algebraic fraction.
\nInput the fraction here: [[0]].
\nInput your answer in the form $\\displaystyle \\frac{(ax+b)}{(cx+d)}$ with no other brackets than those shown.
\nYou can click on Show steps for help. You will lose 1 mark if you do so.
\n", "gaps": [{"type": "jme", "checkingaccuracy": 1e-05, "minlength": {"length": 13.0, "message": "
Input as a single fraction.
", "partialcredit": 0.0}, "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 2.0, "answer": "({a*a2}x+{a*d+c})/({a2}x+{d})", "vsetrange": [10.0, 11.0], "musthave": {"message": "Input as a single fraction
", "showstrings": false, "strings": [")/"], "partialcredit": 0.0}}], "steps": [{"prompt": "\nThe formula for adding these expressions is :
\\[\\simplify[std]{a + {s1} * (c / d) = (ad + {s1} * bc) / d}\\]
and for this exercise we have $\\simplify{d={a2}x+{d}}$.
\n\n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "extensions": [], "statement": "\n
Add the following together and express as a single algebraic fraction.
\n\n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(1..9)", "name": "a"}, "c": {"definition": "random(-9..9 except [0,-a*d])", "name": "c"}, "d": {"definition": "random(-9..9 except [0,a2])", "name": "d"}, "s1": {"definition": "if(c<0,-1,1)", "name": "s1"}, "a2": {"definition": "random(2..9)", "name": "a2"}, "nb": {"definition": "if(c<0,'taking away','adding')", "name": "nb"}}, "metadata": {"notes": "\n \t\t \t\t \t\t
5/08/2012:
\n \t\t \t\t \t\tAdded tags.
\n \t\t \t\t \t\tAdded description.
\n \t\t \t\t \t\tChanged to two questions, for the numerator and denomimator, rather than one as difficult to trap student input for this example. Still some ambiguity however.
\n \t\t \t\t \t\t12/08/2012:
\n \t\t \t\t \t\tBack to one input of a fraction and trapped input in Forbidden Strings.
\n \t\t \t\t \t\tUsed the except feature of ranges to get non-degenerate examples.
\n \t\t \t\t \t\tChecked calculation.OK.
\n \t\t \t\t \t\tImproved display in content areas.
\n \t\t \t\t \n \t\t \n \t\t", "description": "Express $\\displaystyle a \\pm \\frac{c}{x + d}$ as an algebraic single fraction.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}