// Numbas version: finer_feedback_settings {"name": "Numbas demo: video", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Numbas demo: video", "variable_groups": [], "parts": [{"stepsPenalty": 1, "gaps": [{"vsetrange": [11, 12], "showpreview": true, "marks": 3, "notallowed": {"partialCredit": 0, "strings": ["."], "message": "

Input all numbers as fractions or integers and not decimals.

", "showStrings": false}, "answer": "({d-a*c}/{b-a})*ln(x+{a})+({d-b*c}/{a-b})*ln(x+{b})+C", "vsetrangepoints": 5, "variableReplacements": [], "showCorrectAnswer": true, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "scripts": {}, "checkingtype": "absdiff", "checkvariablenames": false, "answersimplification": "std", "variableReplacementStrategy": "originalfirst"}], "type": "gapfill", "marks": 0, "scripts": {}, "steps": [{"type": "information", "marks": 0, "scripts": {}, "variableReplacements": [], "showCorrectAnswer": true, "prompt": "

First of all, factorise the denominator.

\n

You have to find $a$ and $b$ such that $\\simplify[std]{x^2+{a+b}*x+{a*b}=(x+a)*(x+b)}$

\n

Then use partial fractions to write:
\\[\\simplify[std]{({c}*x+{d})/((x +a)*(x+b)) = A/(x+a)+B/(x+b)}\\]

\n

for suitable integers or fractions $A$ and $B$.

\n

This video solves a similar, simpler example.

\n

", "variableReplacementStrategy": "originalfirst"}], "variableReplacements": [], "showCorrectAnswer": true, "prompt": "

$I=$ [[0]]

\n

Enter the constant of integration as $C$.

\n

Click on Show steps for help if you need it: you'll be given a hint, and see a video which solves a similar example.

", "variableReplacementStrategy": "originalfirst"}], "statement": "

It's easy to include videos in Numbas questions. In this question, if the student gets stuck they can click on \"Show steps\" to be given a hint, and shown a video of someone working through a similar problem.

\n

See this question in the public editor

\n

Find the following integral.

\n

\\[I = \\simplify[std]{Int(({c}*x+{d})/(x^2+{a+b}*x+{a*b}),x )}\\]

", "showQuestionGroupNames": false, "tags": ["2 distinct linear factors", "Calculus", "calculus", "completing the square", "constant of integration", "factorising a quadratic", "indefinite integration", "integrals", "integration", "logarithms", "partial fractions", "Steps", "steps", "two distinct linear factors", "video"], "ungrouped_variables": ["a", "c", "b", "d", "s3", "s2", "s1", "b1", "d1"], "functions": {}, "preamble": {"js": "", "css": ""}, "metadata": {"description": "

Customised for the Numbas demo exam

\n

Factorise $x^2+cx+d$ into 2 distinct linear factors and then find $\\displaystyle \\int \\frac{ax+b}{x^2+cx+d}\\;dx,\\;a \\neq 0$ using partial fractions or otherwise.

\n

Video in Show steps.

", "notes": "\n \t\t \t\t

5/08/2012:

\n \t\t \t\t

Added tags.

\n \t\t \t\t

Added description.

\n \t\t \t\t

Added decimal point as forbidden string.

\n \t\t \t\t

Note the checking range is chosen so that the arguments of the log terms are always positive - could have used abs - might be better?

\n \t\t \t\t

Improved display of Advice. 

\n \t\t \t\t

Added information about Show steps, also introduced penalty of 1 mark.

\n \t\t \t\t

Added !noLeadingMinus to ruleset std for display purposes.

\n \t\t \n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "questions": [], "pickQuestions": 0}], "type": "question", "variablesTest": {"maxRuns": 100, "condition": ""}, "advice": "

First we factorise $\\simplify[std]{x^2+{a+b}*x+{a*b}=(x+{a})*(x+{b})}$. You can do this by spotting the factors or by completing the square.

\n

Next we use partial fractions to find $A$ and $B$ such that

\n

\\[ \\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b})) = A/(x+{a})+B/(x+{b})} \\]

\n

Multiplying both sides of the equation by $\\displaystyle \\simplify[std]{1/((x +{a})*(x+{b}))}$, we obtain

\n

\\begin{align}
&& \\simplify[std]{A*(x+{b})+B*(x+{a})} &= \\simplify[std]{{c}*x+{d}}\\\\
\\Rightarrow && \\simplify[std]{(A+B)*x+{b}*A+{a}*B} &= \\simplify[std]{{c}*x+{d}}
\\end{align}

\n

Coefficients of similar powers of $x$ on each side of the equation must be equal, so we can write down two new equations identifying the coefficients on each side:

\n

Constant term: $\\simplify[std]{{b}*A+{a}*B = {d}}$

\n

Coefficent of $x$: $ \\simplify[std]{A+B={c}}$ which gives $A =\\var{c} -B$

\n

On solving these equations, we obtain $\\displaystyle \\simplify[std]{A = {d-a*c}/{b-a}}$ and $\\displaystyle \\simplify[std]{B={d-b*c}/{a-b}}$, which gives

\n

\\[ \\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b})) = ({d-a*c}/{b-a})*(1/(x+{a}) )+({d-b*c}/{a-b})*(1/(x+{b}))} \\]

\n

So

\n

\\begin{align}
I &= \\simplify[std]{int(({c}*x+{d})/(x^2+{a+b}*x+{a*b}),x )} \\\\[0.5em]
&= \\simplify[std]{int(({c}*x+{d})/((x +{a})*(x+{b})),x )} \\\\[0.5em]
&= \\simplify[std]{({d-a*c}/{b-a})*(int(1/(x+{a}),x)) +({d-b*c}/{a-b})int(1/(x+{b}),x)} \\\\[0.5em]
&= \\simplify[std]{({d-a*c}/{b-a})*ln(x+{a})+({d-b*c}/{a-b})*ln(x+{b})+C}
\\end{align}

", "variables": {"c": {"name": "c", "description": "", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)"}, "s2": {"name": "s2", "description": "", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)"}, "b1": {"name": "b1", "description": "", "templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(1..9)"}, "a": {"name": "a", "description": "", "templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)"}, "d": {"name": "d", "description": "", "templateType": "anything", "group": "Ungrouped variables", "definition": "if(d1=a*c,if(d1+1=b*c,d1+2,d1+1),if(d1=b*c,if(d1+1=a*c,d1+2,d1+1),d1))"}, "b": {"name": "b", "description": "", "templateType": "anything", "group": "Ungrouped variables", "definition": "if(b1=a,b1+s3,b1)"}, "s3": {"name": "s3", "description": "", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)"}, "d1": {"name": "d1", "description": "", "templateType": "anything", "group": "Ungrouped variables", "definition": "s3*random(1..9)"}, "s1": {"name": "s1", "description": "", "templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)"}}, "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}]}