// Numbas version: finer_feedback_settings {"name": "Numbas demo: video", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Numbas demo: video", "variable_groups": [], "parts": [{"stepsPenalty": 1, "gaps": [{"vsetrange": [11, 12], "showpreview": true, "marks": 3, "notallowed": {"partialCredit": 0, "strings": ["."], "message": "
Input all numbers as fractions or integers and not decimals.
", "showStrings": false}, "answer": "({d-a*c}/{b-a})*ln(x+{a})+({d-b*c}/{a-b})*ln(x+{b})+C", "vsetrangepoints": 5, "variableReplacements": [], "showCorrectAnswer": true, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "scripts": {}, "checkingtype": "absdiff", "checkvariablenames": false, "answersimplification": "std", "variableReplacementStrategy": "originalfirst"}], "type": "gapfill", "marks": 0, "scripts": {}, "steps": [{"type": "information", "marks": 0, "scripts": {}, "variableReplacements": [], "showCorrectAnswer": true, "prompt": "First of all, factorise the denominator.
\nYou have to find $a$ and $b$ such that $\\simplify[std]{x^2+{a+b}*x+{a*b}=(x+a)*(x+b)}$
\nThen use partial fractions to write:
\\[\\simplify[std]{({c}*x+{d})/((x +a)*(x+b)) = A/(x+a)+B/(x+b)}\\]
for suitable integers or fractions $A$ and $B$.
\nThis video solves a similar, simpler example.
\n", "variableReplacementStrategy": "originalfirst"}], "variableReplacements": [], "showCorrectAnswer": true, "prompt": "$I=$ [[0]]
\nEnter the constant of integration as $C$.
\nClick on Show steps for help if you need it: you'll be given a hint, and see a video which solves a similar example.
", "variableReplacementStrategy": "originalfirst"}], "statement": "It's easy to include videos in Numbas questions. In this question, if the student gets stuck they can click on \"Show steps\" to be given a hint, and shown a video of someone working through a similar problem.
\nSee this question in the public editor
\nFind the following integral.
\n\\[I = \\simplify[std]{Int(({c}*x+{d})/(x^2+{a+b}*x+{a*b}),x )}\\]
", "showQuestionGroupNames": false, "tags": ["2 distinct linear factors", "Calculus", "calculus", "completing the square", "constant of integration", "factorising a quadratic", "indefinite integration", "integrals", "integration", "logarithms", "partial fractions", "Steps", "steps", "two distinct linear factors", "video"], "ungrouped_variables": ["a", "c", "b", "d", "s3", "s2", "s1", "b1", "d1"], "functions": {}, "preamble": {"js": "", "css": ""}, "metadata": {"description": "Customised for the Numbas demo exam
\nFactorise $x^2+cx+d$ into 2 distinct linear factors and then find $\\displaystyle \\int \\frac{ax+b}{x^2+cx+d}\\;dx,\\;a \\neq 0$ using partial fractions or otherwise.
\nVideo in Show steps.
", "notes": "\n \t\t \t\t5/08/2012:
\n \t\t \t\tAdded tags.
\n \t\t \t\tAdded description.
\n \t\t \t\tAdded decimal point as forbidden string.
\n \t\t \t\tNote the checking range is chosen so that the arguments of the log terms are always positive - could have used abs - might be better?
\n \t\t \t\tImproved display of Advice.
\n \t\t \t\tAdded information about Show steps, also introduced penalty of 1 mark.
\n \t\t \t\tAdded !noLeadingMinus to ruleset std for display purposes.
\n \t\t \n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "questions": [], "pickQuestions": 0}], "type": "question", "variablesTest": {"maxRuns": 100, "condition": ""}, "advice": "First we factorise $\\simplify[std]{x^2+{a+b}*x+{a*b}=(x+{a})*(x+{b})}$. You can do this by spotting the factors or by completing the square.
\nNext we use partial fractions to find $A$ and $B$ such that
\n\\[ \\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b})) = A/(x+{a})+B/(x+{b})} \\]
\nMultiplying both sides of the equation by $\\displaystyle \\simplify[std]{1/((x +{a})*(x+{b}))}$, we obtain
\n\\begin{align}
&& \\simplify[std]{A*(x+{b})+B*(x+{a})} &= \\simplify[std]{{c}*x+{d}}\\\\
\\Rightarrow && \\simplify[std]{(A+B)*x+{b}*A+{a}*B} &= \\simplify[std]{{c}*x+{d}}
\\end{align}
Coefficients of similar powers of $x$ on each side of the equation must be equal, so we can write down two new equations identifying the coefficients on each side:
\nConstant term: $\\simplify[std]{{b}*A+{a}*B = {d}}$
\nCoefficent of $x$: $ \\simplify[std]{A+B={c}}$ which gives $A =\\var{c} -B$
\nOn solving these equations, we obtain $\\displaystyle \\simplify[std]{A = {d-a*c}/{b-a}}$ and $\\displaystyle \\simplify[std]{B={d-b*c}/{a-b}}$, which gives
\n\\[ \\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b})) = ({d-a*c}/{b-a})*(1/(x+{a}) )+({d-b*c}/{a-b})*(1/(x+{b}))} \\]
\nSo
\n\\begin{align}
I &= \\simplify[std]{int(({c}*x+{d})/(x^2+{a+b}*x+{a*b}),x )} \\\\[0.5em]
&= \\simplify[std]{int(({c}*x+{d})/((x +{a})*(x+{b})),x )} \\\\[0.5em]
&= \\simplify[std]{({d-a*c}/{b-a})*(int(1/(x+{a}),x)) +({d-b*c}/{a-b})int(1/(x+{b}),x)} \\\\[0.5em]
&= \\simplify[std]{({d-a*c}/{b-a})*ln(x+{a})+({d-b*c}/{a-b})*ln(x+{b})+C}
\\end{align}