// Numbas version: finer_feedback_settings {"name": "Matrizenrechnung", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Matrizenrechnung", "tags": [], "metadata": {"description": "
Zwei einfache Aufgaben zur Matrizenrechnung.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Berechnen Sie die unten angegebenen Matrizen.
\nAchten Sie bitte darauf, ggf. zunächst die korrekte Größe der Ergebnis-Matrix festzulegen!
", "advice": "Lösung zu a)
\nBei der transponierten Matrix werden einfach nur Zeilen und Spalten vertauscht, das Ergebnis ist demnach
\n$\\var{B}^T=\\var{BT}$.
\nLösung zu b):
\nAllgemein gilt: Ist $A$ eine $(n,p)$-Matrix und $B$ eine $(p,m)$-Matrix dann ist die Produktmatrix $C = A \\cdot B$ ist eine $(m,n)$-Matrix, und die Elemente $c_{ik}$ ergeben sich als Skalarprodukt der $i$-ten Zeile von $A$ mit der $k$-ten Spalte von $B$, also:
$c_{ik} \\ = \\ \\sum\\limits_{r=1}^p a_{ir} b_{rk} \\qquad(i=1,\\ldots,m; \\ k=1,\\ldots,n).$
Im konkreten Fall ergibt dies:
\n$A$ ist eine $(3,3)$-Matrix und $B$ ist eine $(3,2)$-Matrix, also ist $C=A\\cdot B$ eine $(3,2)$-Matrix, es ergibt sich dann:
\n$\\var{A}\\cdot\\var{B}=\\begin{pmatrix}
\\var{A[0][0]}\\cdot \\var{B[0][0]}+ \\var{A[0][1]}\\cdot \\var{B[1][0]} + \\var{A[0][2]}\\cdot \\var{B[2][0]} &
\\var{A[0][0]}\\cdot \\var{B[0][1]}+ \\var{A[0][1]}\\cdot \\var{B[1][1]} + \\var{A[0][2]}\\cdot \\var{B[2][1]} \\\\
\\var{A[1][0]}\\cdot \\var{B[0][0]}+ \\var{A[1][1]}\\cdot \\var{B[1][0]} + \\var{A[1][2]}\\cdot \\var{B[2][0]} &
\\var{A[1][0]}\\cdot \\var{B[0][1]}+ \\var{A[1][1]}\\cdot \\var{B[1][1]} + \\var{A[1][2]}\\cdot \\var{B[2][1]} \\\\
\\var{A[2][0]}\\cdot \\var{B[0][0]}+ \\var{A[2][1]}\\cdot \\var{B[1][0]} + \\var{A[2][2]}\\cdot \\var{B[2][0]} &
\\var{A[2][0]}\\cdot \\var{B[0][1]}+ \\var{A[2][1]}\\cdot \\var{B[1][1]} + \\var{A[2][2]}\\cdot \\var{B[2][1]} \\\\
\\end{pmatrix}=\\var{AxB}$
$\\var{B}^T=$ [[0]]
", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "BT", "correctAnswerFractions": false, "numRows": "2", "numColumns": "3", "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "precisionType": "dp", "precision": 0, "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false}], "sortAnswers": false}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\var{A}\\cdot\\var{B}=$
", "correctAnswer": "AxB", "correctAnswerFractions": false, "numRows": "1", "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "precisionType": "dp", "precision": 0, "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}]}]}], "contributors": [{"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}]}