// Numbas version: finer_feedback_settings {"name": "Zuordnung Matrix - lineare Abbildung", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Zuordnung Matrix - lineare Abbildung", "tags": [], "metadata": {"description": "
Find a matrix whose associated linear map maps the unit square to the shown parallelogram. Match figures \"of linear maps\" with matrices.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "a)
\nJede bijektive lineare Abbildung bildet das Einheitsquadrat auf ein Parallelogramm ab (vgl. Bemerkung 7.3 im Skript). Dabei werden die Standardbasisvektoren $e_1$ und $e_2$ auf die beiden Ecken des Parallelogramms abgebildet, die mit dem Ursprung durch eine Kante verbunden sind.
\nAus der Zeichnung lesen wir ab, dass $\\mathbf f_A$ die Standardbasisvektoren $e_1$ und $e_2$ auf die Vektoren $\\var{A * vector(1,0)}$ und $\\var{A * vector(0,1)}$ abbilden muss (und jede lineare Abbildung, die das tut, bildet dann auch das Einheitsquadrat auf das grüne Parallelogramm ab). Andererseits ist $A e_1$ die erste und $A e_2$ die zweite Spalte von $A$. Die beiden möglichen Antworten auf die Frage sind daher
\n\\[ \\var{A}\\quad\\text{und}\\quad \\var{Ax}. \\]
\nb)
\nDie Matrix $\\var{M[0]}$ ist eine Streckung, und zwar um den Faktor $\\var{M[0][0][0]}$ in Richtung der $x$-Achse und den Faktor $\\var{M[0][1][1]}$ in Richtung der $y$-Achse.
\nDie Spalten der Matrix $\\var{M[1]}$ sind linear abhängig, daher ist das Bild der zugehörigen linearen Abbildung eine Ursprungsgerade.
\nDie Matrix $\\var{M[2]}$ ist eine Scherung.
\nDie Matrix $\\var[fractionNumbers]{M[3]}$ ist näherungsweise eine Drehung um den Ursprung. Siehe Ergänzung 7.59 im Skript.
", "rulesets": {}, "extensions": ["jsxgraph"], "variables": {"A": {"name": "A", "group": "Ungrouped variables", "definition": "matrix([random(-1..1), random(-2..2)], [random(-2..2),1])", "description": "", "templateType": "anything"}, "Ax": {"name": "Ax", "group": "Ungrouped variables", "definition": "A * matrix([0, 1], [1,0])", "description": "Swap columns of $A$, this is the other acceptable solution in part a).
", "templateType": "anything"}, "M": {"name": "M", "group": "Ungrouped variables", "definition": "[ matrix([random(-2..2 except 0), 0], [0, random(-2..2 except 0)]),\n matrix([r1,r2], [s1, s2]),\n matrix([1, random(-2..2 except 0)], [0, 1]),\n matrix([ra(cos(alpha)), -ra(sin(alpha))], [ra(sin(alpha)), ra(cos(alpha))])\n ]", "description": "", "templateType": "anything"}, "r1": {"name": "r1", "group": "Ungrouped variables", "definition": "random(-2..2 except 0)", "description": "", "templateType": "anything"}, "s1": {"name": "s1", "group": "Ungrouped variables", "definition": "r*r1", "description": "", "templateType": "anything"}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "r*r2", "description": "", "templateType": "anything"}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "random(-2..2)", "description": "", "templateType": "anything"}, "alpha": {"name": "alpha", "group": "Ungrouped variables", "definition": "random(pi/3, pi/4, pi/5, -pi/5, 2*pi/5, -pi/3, -pi/4)", "description": "", "templateType": "anything"}, "Mshuffled": {"name": "Mshuffled", "group": "Ungrouped variables", "definition": "mm[0]", "description": "", "templateType": "anything"}, "mm": {"name": "mm", "group": "Ungrouped variables", "definition": "shuffle_together([M, [[1, -1, -1, -1], [-1, 1, -1, -1], [-1, -1, 1, -1], [-1, -1, -1, 1]]])", "description": "", "templateType": "anything"}, "r2": {"name": "r2", "group": "Ungrouped variables", "definition": "random(-2..2 except 0)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "!(det(A)=0)", "maxRuns": 100}, "ungrouped_variables": ["r1", "A", "Ax", "M", "s1", "s2", "r", "alpha", "Mshuffled", "mm", "r2"], "variable_groups": [], "functions": {"plot": {"parameters": [["t", "matrix"]], "type": "html", "language": "javascript", "definition": "var div = Numbas.extensions.jsxgraph.makeBoard(\n '400px', '400px',\n {\n boundingBox:[-4, 4, 4, -4],\n grid: true,\n axis: true\n });\n \nvar board = div.board;\n\nboard.create('polygon', [[0, 0], [1, 0], [1,1], [0,1]], \n {fillColor: 'blue', borders: {fixed: true},\n vertices: {fixed: true, visible: false},\n withLabel: true, name: '$U$'});\nboard.create('polygon', [[0, 0], [t[0][0], t[1][0]], [t[0][0]+t[0][1], t[1][0]+t[1][1]], [t[0][1], t[1][1]]],\n {borders: {fixed: true},\n vertices: {fixed: true, visible: false},\n fillColor: 'green', fixed: true});\n\nreturn div"}, "plot1": {"parameters": [["t", "matrix"]], "type": "html", "language": "javascript", "definition": "var div = Numbas.extensions.jsxgraph.makeBoard(\n '250px', '250px',\n {\n boundingBox:[-6, 6, 6, -6],\n grid: true,\n axis: true\n });\n \nvar board = div.board;\n\nvar a1 = Math.floor(Math.random() * 4) - 2;\nvar a2 = Math.floor(Math.random() * 4) - 2;\n\nfunction apply_t(x,y) { return [ t[0][0]*x + t[0][1]*y, t[1][0]*x + t[1][1]*y ]; }\n\nboard.create('polygon', [[a1, a2], [a1+1, a2], [a1+1,a2+1], [a1,a2+1]], \n {fillColor: 'blue', borders: {fixed: true},\n vertices: {fixed: true, visible: false},\n withLabel: true, name: '$U$'});\nboard.create('polygon', [apply_t(a1, a2), apply_t(a1+1,a2), apply_t(a1+1,a2+1), apply_t(a1, a2+1)],\n {borders: {fixed: true},\n vertices: {fixed: true, visible: false},\n fillColor: 'green', fixed: true});\n\nreturn div"}, "ra": {"parameters": [["a", "number"]], "type": "rational", "language": "jme", "definition": "let(x, rational_approximation(a, 3), x[0]/x[1])"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Wir betrachten die folgende Zeichnung:
\n{plot(A)}
\nGeben Sie eine Matrix $A\\in M_2(\\mathbb R)$ an, so dass die Abbildung $\\mathbf f_A\\colon \\mathbb R^2\\to\\mathbb R^2$, $x\\mapsto Ax$ das \"Einheitsquadrat\" mit den Eckpunkten $\\begin{pmatrix} 0 \\\\ 0\\end{pmatrix}$, $\\begin{pmatrix} 1 \\\\ 0\\end{pmatrix}$, $\\begin{pmatrix} 0 \\\\ 1\\end{pmatrix}$, $\\begin{pmatrix} 1 \\\\ 1\\end{pmatrix}$ auf das im Bild gezeigte grüne Parallelogramm abbildet.
\n[[0]]
", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Wir betrachten die folgenden 4 Skizzen:
\nSkizze 1 | \nSkizze 2 | \nSkizze 3 | \nSkizze 4 | \n
{plot1(Mshuffled[0])} | \n{plot1(Mshuffled[1])} | \n{plot1(Mshuffled[2])} | \n{plot1(Mshuffled[3])} | \n
In jeder Skizze ist das grüne Parallelogramm das Bild des blauen Quadrats unter einer Abbildung der Form $\\mathbf f_M\\colon \\mathbb R^2\\to \\mathbb R^2$, $x\\mapsto Mx$. Ordnen Sie die 4 Skizzen oben den folgenden Matrizen zu:
\n\\[ A = \\var[fractionnumbers]{M[0]},\\quad B = \\var[fractionnumbers]{M[1]},\\quad C = \\var[fractionnumbers]{M[2]},\\quad D = \\var[fractionnumbers]{M[3]}\\]
", "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": false, "shuffleAnswers": false, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "choices": ["Skizze 1", "Skizze 2", "Skizze 3", "Skizze 4"], "matrix": "mm[1]", "layout": {"type": "all", "expression": ""}, "answers": ["$A$", "$B$", "$C$", "$D$"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ulrich G\u00f6rtz", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7603/"}]}]}], "contributors": [{"name": "Ulrich G\u00f6rtz", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7603/"}]}