// Numbas version: finer_feedback_settings {"name": "Perpetuities", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["value", "p", "interest", "interestd", "int", "v", "disc"], "name": "Perpetuities", "tags": [], "advice": "

Perpetuites are annuities that continue indefinitely, i.e $n \\to\\infty$.

\n

As $v={1 \\over 1+i}<1$, then as $n \\to\\infty$, the $\\lim_{n \\to\\infty}\\ v^n \\to 0$

\n\n

This is annuity immediate that continues indefinitely.

\n

The formula for the present value (one period before the first payment) for a standard annuity immediate is given by:

\n

${a}_{n|}^{(p)}={1-v^n \\over i^{(p)}}$

\n

(see Numbas- Annuities PV)

\n

As perpetuities are annuites that continue indefintely, the formula for the present value of a perpetuity immediate is:

\n

$\\lim_{n \\to\\infty}\\ {a}_{n|}^{(p)}=\\lim_{n\\to\\infty}\\ {1-v^n \\over i^{(p)}}={1 \\over i^{(p)}}$

\n

So then

\n

${a}_{\\infty}^{(p)}={1 \\over i^{(p)}}$

\n

where:

\n\n

In order to get the present value of an annuity that pays a certain value per period, multiply ${a}_{\\infty|}^{(p)}$ by both the value and p. So the present value is given by:

\n

$px{a}_{\\infty|}^{(p)}$

\n

where:

\n\n

This is annuity due that continues indefinitely.

\n

The formula for the present value (at the time of the first payment) for a standard annuity is given by:

\n

$\\ddot{a}_{n|}^{(p)}={1-v^n \\over d^{(p)}}$

\n

(see Numbas- Annuities PV)

\n

As perpetuities are annuities that sontinue indefinitely, the formula for the present value of a perpetuity due is:

\n

$lim_{n\\to\\infty} \\ddot{a}_{n|}^{(p)}=lim_{n\\to\\infty} {1-v^n \\over d^{(p)}}={1 \\over d^{(p)}}$

\n

so then:

\n

$\\ddot{a}_{\\infty|}^{(p)}={1 \\over d^{(p)}}$

\n

where:

\n\n

The relationship between the effective and nominal discount rate is given by:

\n

$1-d=(1-{d^{(p)} \\over p})^p$

\n

Re-arranging this and making $d^{(p)}$ the subject of the formula gives the nominal discount rate.

\n

In order to get the present value of an annuity that pays a certain value per period, multiply $\\ddot{a}_{\\infty|}^{(p)}$ by both the value and p. So the present value is given by:

\n

$px\\ddot{a}_{\\infty|}^{(p)}$

\n

where:

\n\n

In this question:

\n\n

Substituting these numbers into the above formulas will give the present value for a perpetuity immediate and due.

", "rulesets": {}, "parts": [{"precisionType": "dp", "prompt": "

the annuity is annuity immediate?

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "2", "maxValue": "{value}/{int}", "minValue": "{value}/{int}", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "

the annuity is annuity due?

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "2", "maxValue": "{value}/{disc}", "minValue": "{value}/{disc}", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "statement": "

What is the present value of an annuity that continues indefinitely which pays £{value} every {p} months at an AER of {interest}% if:

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"int": {"definition": "(((1+({interestd}))^(1/(12/{p})))-1)*(12/{p})", "templateType": "anything", "group": "Ungrouped variables", "name": "int", "description": ""}, "v": {"definition": "1/(1+{interestd})", "templateType": "anything", "group": "Ungrouped variables", "name": "v", "description": ""}, "value": {"definition": "random(500..20000#250)", "templateType": "randrange", "group": "Ungrouped variables", "name": "value", "description": ""}, "p": {"definition": "random([1,2,3,4,6,12])", "templateType": "anything", "group": "Ungrouped variables", "name": "p", "description": ""}, "disc": {"definition": "(1-({v}^({p}/12)))*(12/{p})", "templateType": "anything", "group": "Ungrouped variables", "name": "disc", "description": ""}, "interest": {"definition": "random(1..10#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "interest", "description": ""}, "interestd": {"definition": "{interest}/100", "templateType": "anything", "group": "Ungrouped variables", "name": "interestd", "description": ""}}, "metadata": {"notes": "", "description": "", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Habiba Gora", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/494/"}]}]}], "contributors": [{"name": "Habiba Gora", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/494/"}]}