// Numbas version: finer_feedback_settings {"name": "Net Present Value", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["value1", "value2", "value3", "value4", "n1", "n2", "n3", "npvone", "npv20", "irr"], "name": "Net Present Value", "tags": [], "advice": "\n

Suppose you gain value 1 at time $t=1$, value 2 at time $t=2$,... and value n at time $t=n$, then the NPV is given by;

\n

$NPV=x_1v+x_2v^2+...+x_nv^n$

\n

where:

\n\n

In the above question, the NPV is given by:

\n

$NPV=-{x_1}-x_2v^{t_2}+x_3v^{t_3}+x_4v^{t_4}$

\n

where:

\n\n

Substituting these values into the NPV expression gives the net present value for 1% or 20%.

\n\n

The internal rate of return (IRR) is the interest rate at which the NPV is zero (i.e. $NPV(i)=0$). Another name for this is yield.

\n

In order to be able to use linear interpolation, one must have an interest rate that gives a negative NPV and an interest rate that gives a positive NPV. To approximate the internal rate of return, use the following:

\n

$i_*=i_1+{{i_2-i_1} \\over {y_2-y_1}}(y_*-y_1)$

\n

where:

\n\n

Substituting $i_1=0.01, i_2=0.2$, the corresponding NPV's and $y_*=0$ into the above equation gives the internal rate of return.

", "rulesets": {}, "parts": [{"precisionType": "dp", "prompt": "

What is the NPV (to two decimal places) on the basis of an interest rate of 1%?

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "2", "maxValue": "npvone", "minValue": "npvone", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "

What is the NPV (to two decimal places) on the basis of an interest rate of 20%? 

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "2", "maxValue": "npv20", "minValue": "npv20", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "

Approximate the internal rate of return (% to two deicmal places) of this transaction using linear interpolation with the values above.

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "2", "maxValue": "{irr}*100", "minValue": "{irr}*100", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "statement": "

An investor enters into an agreement to pay £{value1} immediately and £{value2} at the end of {n1} years in exchange for the receipt of £{value3} at the end of year {n2} and £{value4} at the end of year {n3}.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"n3": {"definition": "random(2..5#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "n3", "description": ""}, "irr": {"definition": "0.01+(((0.2-0.01)/({npv20}-{npvone}))*(0-{npvone}))", "templateType": "anything", "group": "Ungrouped variables", "name": "irr", "description": ""}, "npvone": {"definition": "({value3}/(1.01^{n2}))+({value4}/(1.01^{n3}))-({value1})-({value2}/(1.01^{n1}))", "templateType": "anything", "group": "Ungrouped variables", "name": "npvone", "description": ""}, "value4": {"definition": "random(5600..7500#500)", "templateType": "randrange", "group": "Ungrouped variables", "name": "value4", "description": ""}, "value3": {"definition": "random(3000..4500#500)", "templateType": "randrange", "group": "Ungrouped variables", "name": "value3", "description": ""}, "value2": {"definition": "random(1500..1350#20)", "templateType": "randrange", "group": "Ungrouped variables", "name": "value2", "description": ""}, "value1": {"definition": "7000", "templateType": "number", "group": "Ungrouped variables", "name": "value1", "description": ""}, "n1": {"definition": "random(1..3#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "n1", "description": ""}, "n2": {"definition": "random(2..4#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "n2", "description": ""}, "npv20": {"definition": "({value3}/(1.2^{n2}))+({value4}/(1.2^{n3}))-({value1})-({value2}/(1.2^{n1}))", "templateType": "anything", "group": "Ungrouped variables", "name": "npv20", "description": ""}}, "metadata": {"notes": "", "description": "", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Habiba Gora", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/494/"}]}]}], "contributors": [{"name": "Habiba Gora", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/494/"}]}