// Numbas version: finer_feedback_settings {"name": "Annuities PV", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["time", "value", "p", "n", "interest", "intdec", "v", "int", "disc", "arrears", "advance"], "name": "Annuities PV", "tags": [], "advice": "
An annuity is a regular series of payments. There are two types of annuities :
\nThe present value of an annuity is the discounted value at $t=0$ of the annuity paying a certain value every period for n years.
\nThis is when the payments are at the end of each period i.e. annuity immediate.
\n${a}_{n|}^{(p)}$ is the actuarial notation for the discounted value of an annuity paying p times a year for n years with payments of ${1 \\over p}$ at the end of each period.
\nThe formula is given by:
\n${a}_{n|}^{(p)}={1-v^n \\over i^{(p)}}$
\nwhere:
\nIn order to get the discounted value of an annuity paying a certain value p times a year at the end of every period, multiply ${a}_{n|}^{(p)}$ by both the value and p.
\nSo the present value is given by:
\n$px{a}_{n|}^{(p)}$
\nwhere:
\nThis is when the payments are at the beginning of each period i.e. annuity due.
\n$\\ddot{a}_{n|}^{(p)}$ is the actuarial notation for the discounted value of an annuity paying ${1 \\over p}$ at the start of each period for n years.
\nThe formula is given by:
\n$\\ddot{a}_{n|}^{(p)}={1-v^n \\over d^{(p)}}$
\nwhere:
\nThe relationship between the nominal and effective discount rate is given by:
\n$1-d=(1-{d^{(p)} \\over p})^p$
\nRe-arranging this and making $d^{(p)}$ gives the nominal discount rate.
\nIn order to get the present value of an annuity paying a certain value p times a year at the beginning of every period, multiply $\\ddot{a}_{n|}^{(p)}$ by both the value and p.
\nSo the present value is given by:
\n$px\\ddot{a}_{n|}^{(p)}$
\nwhere:
\nSubstituting in
\ninto the above formulas will give the present value of an annuity that is payed in arrears and in advance.
", "rulesets": {}, "parts": [{"precisionType": "dp", "prompt": "the payments are made in arrears?
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "2", "maxValue": "{arrears}", "minValue": "{arrears}", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": "5", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "the payments are made in advance?
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "2", "maxValue": "{advance}", "minValue": "{advance}", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": "6", "type": "numberentry", "showPrecisionHint": false}], "statement": "Compute the {time} value (to two decimal places) of an annuity paying £{value} {p} times a year for {n} years at an interest rate of {interest}% if:
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"advance": {"definition": "{value}*{p}*((1-({v}^{n}))/{disc})", "templateType": "anything", "group": "Ungrouped variables", "name": "advance", "description": ""}, "int": {"definition": "(((1+{intdec})^(1/{p}))-1)*{p}", "templateType": "anything", "group": "Ungrouped variables", "name": "int", "description": ""}, "v": {"definition": "1/(1+{intdec})", "templateType": "anything", "group": "Ungrouped variables", "name": "v", "description": ""}, "value": {"definition": "random(200..600#50)", "templateType": "randrange", "group": "Ungrouped variables", "name": "value", "description": ""}, "n": {"definition": "random(3..12#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "n", "description": ""}, "p": {"definition": "random([1,2,3,4,6,12,52,365])", "templateType": "anything", "group": "Ungrouped variables", "name": "p", "description": ""}, "disc": {"definition": "(1-({v}^(1/{p})))*{p}", "templateType": "anything", "group": "Ungrouped variables", "name": "disc", "description": ""}, "arrears": {"definition": "{value}*{p}*((1-({v}^{n}))/{int})", "templateType": "anything", "group": "Ungrouped variables", "name": "arrears", "description": ""}, "interest": {"definition": "random(2..10#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "interest", "description": ""}, "time": {"definition": "\"present\"", "templateType": "string", "group": "Ungrouped variables", "name": "time", "description": ""}, "intdec": {"definition": "{interest}/100", "templateType": "anything", "group": "Ungrouped variables", "name": "intdec", "description": ""}}, "metadata": {"notes": "", "description": "", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Habiba Gora", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/494/"}]}]}], "contributors": [{"name": "Habiba Gora", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/494/"}]}