// Numbas version: finer_feedback_settings {"name": "Annuities FV", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["time", "value", "p", "n", "interest", "intdec", "v", "int", "disc", "arrears", "advance"], "name": "Annuities FV", "tags": [], "advice": "

An annuity is a regular series of payments. There are two types of annuities :

\n\n

The future value of an annuity is the accumulated value at $t=n$ of the annuity paying a certain value every period for n years.

\n\n

This is when the payments are at the end of each period i.e. annuity immediate.

\n

${S}_{n|}^{(p)}$ is the actuarial notation for the accumulated value of an annuity paying p times a year for n years with payments of ${1 \\over p}$ at the end of each period.

\n

The formula is given by:

\n

${S}_{n|}^{(p)}={(1+i)^n-1 \\over i^{(p)}}$

\n

where:

\n\n

In order to get the future value of an annuity paying a certain value p times a year at the end of every period, multiply ${S}_{n|}^{(p)}$ by both the value and p.

\n

So the future value is given by:

\n

$px{S}_{n|}^{(p)}$

\n

where:

\n\n

\n\n

This is when the payments are at the beginning of each period i.e. annuity due.

\n

$\\ddot{S}_{n|}^{(p)}$ is the actuarial notation for the accumulated value of an annuity paying ${1 \\over p}$ at the start of each period for n years.

\n

The formula is given by:

\n

$\\ddot{S}_{n|}^{(p)}={(1+i)^n-1 \\over d^{(p)}}$

\n

where:

\n\n

The relationship between the nominal and effective discount rate is given by:

\n

$1-d=(1-{d^{(p)} \\over p})^p$

\n

Re-arranging this and making $d^{(p)}$ gives the nominal discount rate.

\n

In order to get the future value of an annuity paying a certain value p times a year at the beginning of every period, multiply $\\ddot{S}_{n|}^{(p)}$ by both the value and p.

\n

So the future value is given by:

\n

$px\\ddot{S}_{n|}^{(p)}$

\n

where:

\n\n

\n

Substituting in

\n\n

into the above formulas will give the future value of an annuity that is payed in arrears and in advance.

", "rulesets": {}, "parts": [{"precisionType": "dp", "prompt": "

the payments are made in arrears?

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "2", "maxValue": "{arrears}", "minValue": "{arrears}", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": "5", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "

the payments are made in advance?

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "scripts": {}, "precision": "2", "maxValue": "{advance}", "minValue": "{advance}", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "marks": "6", "type": "numberentry", "showPrecisionHint": false}], "statement": "

Compute the {time} value (to two decimal places) of an annuity paying £{value} {p} times a year for {n} years at an interest rate of {interest}% if:

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"advance": {"definition": "{value}*{p}*(((1+{intdec})^{n})-1)/{disc}", "templateType": "anything", "group": "Ungrouped variables", "name": "advance", "description": ""}, "int": {"definition": "(((1+{intdec})^(1/{p}))-1)*{p}", "templateType": "anything", "group": "Ungrouped variables", "name": "int", "description": ""}, "v": {"definition": "1/(1+{intdec})", "templateType": "anything", "group": "Ungrouped variables", "name": "v", "description": ""}, "value": {"definition": "random(200..600#50)", "templateType": "randrange", "group": "Ungrouped variables", "name": "value", "description": ""}, "n": {"definition": "random(3..20#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "n", "description": ""}, "p": {"definition": "random([1,2,3,4,6,12,52,365])", "templateType": "anything", "group": "Ungrouped variables", "name": "p", "description": ""}, "disc": {"definition": "(1-({v}^(1/{p})))*{p}", "templateType": "anything", "group": "Ungrouped variables", "name": "disc", "description": ""}, "arrears": {"definition": "{value}*{p}*(((1+{intdec})^{n})-1)/{int}", "templateType": "anything", "group": "Ungrouped variables", "name": "arrears", "description": ""}, "interest": {"definition": "random(2..10#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "interest", "description": ""}, "time": {"definition": "\"future\"", "templateType": "string", "group": "Ungrouped variables", "name": "time", "description": ""}, "intdec": {"definition": "{interest}/100", "templateType": "anything", "group": "Ungrouped variables", "name": "intdec", "description": ""}}, "metadata": {"notes": "", "description": "", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Habiba Gora", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/494/"}]}]}], "contributors": [{"name": "Habiba Gora", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/494/"}]}