// Numbas version: finer_feedback_settings {"name": "Ein \"Lilavati\"-Problem", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Ein \"Lilavati\"-Problem", "tags": [], "metadata": {"description": "
Aus der indischen Mathematik
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Die folgende Aufgabe ist einem Problem aus dem \"Lilavati\" von Bhaskara nachempfunden:
\nVon einem Strauß reinster Lostosblüten
ein {brueche[a]} wird Shiva als Gabe gebracht,
ein {brueche[b]} an Vishnu, ein {brueche[c]} der Sonne,
ein {brueche[d]} erhält Bhvani.
die übrigen {f} Blüten erhält der ehrenwerte Lehrer.
Man addiert zunächst die als Gabe dargebrachten Anteile:
\n$\\frac{1}{\\var{a}}+\\frac{1}{\\var{b}}+\\frac{1}{\\var{c}}+\\frac{1}{\\var{d}}=\\frac{\\var{lcm(a,b,c,d)/a}+\\var{lcm(a,b,c,d)/b}+\\var{lcm(a,b,c,d)/c}+\\var{lcm(a,b,c,d)/d}}{\\var{lcm(a,b,c,d)}}=\\frac{57}{60}=\\frac{19}{20}$
\nSomit entsprechen $\\frac{1}{20}$ der Blüten {f}, womit es anfangs $20\\cdot \\var{f}=\\var{solution}$ Lotusblüten gewesen sind.
", "rulesets": {}, "extensions": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "parts[0]", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "parts[1]", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "parts[2]", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "parts[3]", "description": "", "templateType": "anything"}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(4,6,8,10,12,14,16)", "description": "", "templateType": "anything"}, "brueche": {"name": "brueche", "group": "Ungrouped variables", "definition": "[\"0\",\"1\",\"2\",\"Drittel\",\"Viertel\",\"F\u00fcnftel\",\"Sechstel\",\"Siebtel\",\"Achtel\"]", "description": "", "templateType": "anything"}, "remains": {"name": "remains", "group": "Ungrouped variables", "definition": "1-1/a-1/b-1/c-1/d", "description": "", "templateType": "anything"}, "solution": {"name": "solution", "group": "Ungrouped variables", "definition": "1/remains*f", "description": "", "templateType": "anything"}, "parts": {"name": "parts", "group": "Ungrouped variables", "definition": "shuffle([3,4,5,6])[0..4]", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d", "f", "brueche", "remains", "solution", "parts"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Wie viele Lotusblüten hatte der Strauß anfangs?
\nAntwort: [[0]] Lotusblüten.
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "solution", "maxValue": "solution", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "dp", "precision": 0, "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain-eu"], "correctAnswerStyle": "plain-eu"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}]}]}], "contributors": [{"name": "Andreas Vohns", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3622/"}]}