// Numbas version: finer_feedback_settings {"name": "Groups and subgroups", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Groups and subgroups", "tags": [], "metadata": {"description": "

A group (chosen randomly, the groups with 6 and those 8 elements are available) is given by its multiplication table. The task is to check whether the group is commutative, to identify all elements of order $\\le 2$, and to find a subgroup which has half as many elements as the given group.

\n

(In German.)

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Wir betrachten die  Gruppe $G = \\{1, 2, 3, 4, 5, 6, 7, 8\\}$$G=\\{1, 2, 3, 4, 5, 6\\}$, die durch die folgende Verknüpfungstafel gegeben ist:

\n

\\[ \\var{latex(latex_table)} \\]

", "advice": "

a)

\n

Dass die Gruppe kommutativ ist, bedeutet, dass die Verknüpfungstafel symmetrisch bezüglich der Diagonalen von links oben nach rechts unten ist.

\n

b)

\n

Die Eigenschaft $g = g^{-1}$ ist äquivalent zu $g\\cdot g = 1$ ($1$ ist das neutrale Element der Verknüpfung). Es sind daher alle diejenigen Elemente anzugeben, für die die entsprechende Eintrag auf der Diagonale gleich $1$ ist.

\n

c)

\n

Es ist eine Teilmenge $H$ mit $\\var{order/2}$ Elementen zu finden, die das neutrale Element $1$ enthält, und abgeschlossen ist unter der Verknüpfung, d.h. für alle $h_1, h_2\\in H$ gilt auch $h_1\\cdot h_2\\in H$. Wenn man alle anderen Zeilen und Spalten der Verknüpfungstabelle streicht, dürfen also nur noch Elemente aus der Teilmenge $H$ stehen bleiben.

\n

\n

Bemerkung.

\n

Diese Gruppe ist isomorph zur Gruppe $\\mathbb Z/6$ (allerdings hier ungewöhnlich geschrieben, da $1$ das neutrale Element in der obigen Verknüpfungstafel ist). Die Gruppe ist zyklisch, d.h. es gibt $g\\in G$ mit $G = \\langle g\\rangle$. Es existiert genau eine Untergruppe mit $3$ Elementen.

\n

Diese Gruppe ist isomorph zur symmetrischen Gruppe $S_3$. Es gibt genau eine Untergruppe mit $3$ Elementen.

\n

Diese Gruppe ist isomorph zur Gruppe $\\mathbb Z/8$ (allerdings hier ungewöhnlich geschrieben, da $1$ das neutrale Element in der obigen Verknüpfungstafel ist). Die Gruppe ist zyklisch, d.h. es gibt $g\\in G$ mit $G = \\langle g\\rangle$. Es existiert genau eine Untergruppe mit $4$ Elementen.

\n

Diese Gruppe ist isomorph zum Produkt $\\mathbb Z/4 \\times \\mathbb Z/2$. Es gibt drei Untergruppen mit $4$ Elementen.

\n

Diese Gruppe ist isomorph zum Produkt $\\mathbb Z/2\\times \\mathbb Z/2 \\times \\mathbb Z/2$. Es gibt sieben Untergruppen mit $4$ Elementen.

\n

Diese Gruppe ist die Diedergruppe $D_8$ mit $8$ Elementen. Es gibt drei Untergruppen mit $4$ Elementen.

\n

Diese Gruppe ist die sogenannte Quaternionen-Gruppe. Es gibt drei Untergruppen mit $4$ Elementen.

\n

Wenn Sie \"Probiere ein andere Aufgabe ...\" anklicken, können Sie eine andere Gruppe untersuchen. (Die Daten in der Aufgabe decken alle zwei sechselementigen und alle fünf achtelementigen Gruppen ab.)

", "rulesets": {}, "extensions": [], "variables": {"groups": {"name": "groups", "group": "Ungrouped variables", "definition": "[[\"C6\", [[1, 2, 3, 4, 5, 6], [2, 3, 4, 5, 6, 1], [3, 4, 5, 6, 1, 2], [4, 5, 6, 1, 2, 3], [5, 6, 1, 2, 3, 4], [6, 1, 2, 3, 4, 5]], true, [4], [1, 3, 5]], [\"S3\", [[1, 2, 3, 4, 5, 6], [2, 3, 1, 6, 4, 5], [3, 1, 2, 5, 6, 4], [4, 5, 6, 1, 2, 3], [5, 6, 4, 3, 1, 2], [6, 4, 5, 2, 3, 1]], false, [4, 5, 6], [1, 2, 3]], [\"C8\", [[1, 2, 3, 4, 5, 6, 7, 8], [2, 3, 4, 5, 6, 7, 8, 1], [3, 4, 5, 6, 7, 8, 1, 2], [4, 5, 6, 7, 8, 1, 2, 3], [5, 6, 7, 8, 1, 2, 3, 4], [6, 7, 8, 1, 2, 3, 4, 5], [7, 8, 1, 2, 3, 4, 5, 6], [8, 1, 2, 3, 4, 5, 6, 7]], true, [5], [1, 3, 5, 7]], [\"C4C2\", [[1, 2, 3, 4, 5, 6, 7, 8], [2, 3, 4, 1, 6, 7, 8, 5], [3, 4, 1, 2, 7, 8, 5, 6], [4, 1, 2, 3, 8, 5, 6, 7], [5, 6, 7, 8, 1, 2, 3, 4], [6, 7, 8, 5, 2, 3, 4, 1], [7, 8, 5, 6, 3, 4, 1, 2], [8, 5, 6, 7, 4, 1, 2, 3]], true, [3, 5, 7], [1, 2, 3, 4]], [\"C2C2C2\", [[1, 2, 3, 4, 5, 6, 7, 8], [2, 1, 4, 3, 6, 5, 8, 7], [3, 4, 1, 2, 7, 8, 5, 6], [4, 3, 2, 1, 8, 7, 6, 5], [5, 6, 7, 8, 1, 2, 3, 4], [6, 5, 8, 7, 2, 1, 4, 3], [7, 8, 5, 6, 3, 4, 1, 2], [8, 7, 6, 5, 4, 3, 2, 1]], true, [2, 3, 4, 5, 6, 7, 8], [1, 2, 3, 4]], [\"D8\", [[1, 2, 3, 4, 5, 6, 7, 8], [2, 3, 4, 1, 8, 5, 6, 7], [3, 4, 1, 2, 7, 8, 5, 6], [4, 1, 2, 3, 6, 7, 8, 5], [5, 6, 7, 8, 1, 2, 3, 4], [6, 7, 8, 5, 4, 1, 2, 3], [7, 8, 5, 6, 3, 4, 1, 2], [8, 5, 6, 7, 2, 3, 4, 1]], false, [3, 5, 6, 7, 8], [1, 2, 3, 4]], [\"Q\", [[1, 2, 3, 4, 5, 6, 7, 8], [2, 5, 4, 7, 6, 1, 8, 3], [3, 8, 5, 2, 7, 4, 1, 6], [4, 3, 6, 5, 8, 7, 2, 1], [5, 6, 7, 8, 1, 2, 3, 4], [6, 1, 8, 3, 2, 5, 4, 7], [7, 4, 1, 6, 3, 8, 5, 2], [8, 7, 2, 1, 4, 3, 6, 5]], false, [5], [1, 3, 5, 7]]]", "description": "", "templateType": "anything"}, "gp": {"name": "gp", "group": "Ungrouped variables", "definition": "random(groups)", "description": "", "templateType": "anything"}, "table": {"name": "table", "group": "Ungrouped variables", "definition": "matrix(gp[1])", "description": "", "templateType": "anything"}, "name": {"name": "name", "group": "Ungrouped variables", "definition": "gp[0]", "description": "", "templateType": "anything"}, "is_commutative": {"name": "is_commutative", "group": "Ungrouped variables", "definition": "gp[2]", "description": "", "templateType": "anything"}, "symbols": {"name": "symbols", "group": "Ungrouped variables", "definition": "['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'][0..order]", "description": "", "templateType": "anything"}, "order": {"name": "order", "group": "Ungrouped variables", "definition": "len(table)", "description": "", "templateType": "anything"}, "elts_of_order2": {"name": "elts_of_order2", "group": "Ungrouped variables", "definition": "set(gp[3] + [1]) // neutral element is not included in data", "description": "", "templateType": "anything"}, "subgp": {"name": "subgp", "group": "Ungrouped variables", "definition": "set(gp[4])", "description": "", "templateType": "anything"}, "latex_table": {"name": "latex_table", "group": "Ungrouped variables", "definition": "\"\\\\begin\\{array\\}\\{c|cccccccc\\} & \" + join(map(string(x), x, 1..order), \" & \") + \" \\\\\\\\\\\\hline \" +\njoin(map(\n join([row] + map(table[row-1][col-1], col, 1..order), \" & \"),\n row, 1..order),\n \" \\\\\\\\\\\\ \")\n+ \"\\\\end\\{array\\}\"", "description": "", "templateType": "anything"}, "tt": {"name": "tt", "group": "Ungrouped variables", "definition": "is_subgroup(set(1,3,5))", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["groups", "gp", "table", "name", "is_commutative", "symbols", "order", "elts_of_order2", "subgp", "latex_table", "tt"], "variable_groups": [], "functions": {"is_subgroup": {"parameters": [["H", "set"]], "type": "boolean", "language": "jme", "definition": "all(map(all(map(table[x-1][y-1] in H, x, list(H))), y, list(H)))"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Ist die Gruppe $G$ kommutativ?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Ja", "Nein"], "matrix": ["if(is_commutative, 2, 0)", "if(is_commutative, 0, 2)"], "distractors": ["", ""]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Geben Sie die Menge aller Elemente $g\\in G$ mit $g = g^{-1}$ an. (In der Numbas-Notation, $\\{ 1, 2, 3\\}$ wird geschrieben als set(1, 2, 3).)

\n

[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{elts_of_order2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Geben Sie eine Untergruppe von $G$ an, die $\\var{order/2}$ Elemente hat.

\n

[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "evaluated_answer:\n try(eval(interpreted_answer), err, fail(\"Keine g\u00fcltige Antwort\"); set())\n\nmark:\n apply(studentExpr);\n apply(failNameToCompare);\n apply(unexpectedVariables);\n if(\n evaluated_answer isa \"set\",\n correctif(\n 1 in evaluated_answer and \n len(list(evaluated_answer)) = order/2 and\n is_subgroup(evaluated_answer)),\n fail(\"Es wurde keine Menge angegeben.\")\n )", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{subgp}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ulrich G\u00f6rtz", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7603/"}]}]}], "contributors": [{"name": "Ulrich G\u00f6rtz", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7603/"}]}