// Numbas version: finer_feedback_settings {"name": "Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Quotient rule", "tags": ["Calculus", "algebraic manipulation", "calculus", "derivatives", "deriving a quotient", "differentiate a quotient", "differentiation", "dividing linear polynomials"], "advice": "

a)

\n

We have $\\displaystyle \\simplify[std]{{a}x+{b}={a}/{c}*({c}x+{d})+{b}-{a}*{d}/{c}={a}/{c}*({c}x+{d})+{-det}/{c}}$
Hence \\[\\begin{eqnarray*} \\simplify[std]{({a} * x+{b})/({c}x+{d})}&=&\\simplify[std]{({a}/{c}*({c}x+{d})+{-det}/{c})/({c}x+{d})}\\\\ &=&\\simplify[std]{{a}/{c}+({-det}/{c})/({c}x+{d})} \\end{eqnarray*}\\]
Where we have divided out by $\\simplify[std]{{c}x+{d}}$ at the last step.

\n

b)

\n

We have \\[\\frac{dg}{dx} = \\simplify[std]{{-c}/({c}x+{d})^2}\\]
using standard rules of differentiation.
Since from a), \\[f(x) = \\simplify[std]{{a}/{c}+({-det}/{c})/({c}x+{d})}\\]
 we see that
\\[\\begin{eqnarray*}\\frac{df}{dx} &=&\\simplify[std,fractionNumbers,!unitPower,!zeroFactor,!zeroTerm,!zeroPower]{(-{c})*(({-det}/{c})/({c}x+{d})^2)}\\\\ &=&\\simplify[std]{{det}/({c}x+{d})^2} \\end{eqnarray*}\\]

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}]}, "parts": [{"stepspenalty": 1.0, "prompt": "\n

Find numbers $a$ and $b$ such that
\\[\\simplify[std]{f(x) = a + b/({c}x+{d})}\\]
Enter a and b as integers or fractions, but not as decimals.

\n

$a=\\;$[[0]]

\n

$b=\\;$[[1]]

\n

You can click on Show steps to get some help, but you will lose 1 mark if you do so.

\n ", "gaps": [{"notallowed": {"message": "

Input numbers as fractions or integers and not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{a}/{c}", "type": "jme"}, {"notallowed": {"message": "

Input numbers as fractions or integers and not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{-det}/{c}", "type": "jme"}], "steps": [{"prompt": "

$\\simplify[std]{{a}x+{b}=a*({c}x+{d})+b}$ for suitable numbers $a$ and $b$.

", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}, {"prompt": "\n

Differentiate
\\[\\simplify[std]{g(x) = 1/({c}x+{d})}\\]

\n

$\\displaystyle \\frac{dg}{dx}=\\;$[[0]]

\n

Hence using the first part of the question differentiate \\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x+{d})}\\]

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[1]]

\n

Input numbers as fractions or integers and not as decimals.

\n ", "gaps": [{"notallowed": {"message": "

Input numbers as fractions or integers and not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [10.0, 11.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{-c}/({c}x+{d})^2", "type": "jme"}, {"notallowed": {"message": "

Input numbers as fractions or integers and not as decimals.

", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [10.0, 11.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{det}/({c}x+{d})^2", "type": "jme"}], "type": "gapfill", "marks": 0.0}], "extensions": [], "statement": "

Let \\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x+{d})}\\]

", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "if(a*d=b*c1,c1+1,c1)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "d": {"definition": "s2*random(1..9)", "name": "d"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "det": {"definition": "a*d-b*c", "name": "det"}, "c1": {"definition": "random(2..8)", "name": "c1"}}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Checked calculation. OK.

\n \t\t

Added description.

\n \t\t

All round improvement in display.

\n \t\t

Added  forbidden instructions on using decimals.

\n \t\t

Added information on losing 1 mark if use Show steps in part a).

\n \t\t", "description": "

Other method. Find $p,\\;q$ such that $\\displaystyle \\frac{ax+b}{cx+d}= p+ \\frac{q}{cx+d}$. Find the derivative of $\\displaystyle \\frac{ax+b}{cx+d}$.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}