// Numbas version: finer_feedback_settings {"name": "Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Quotient rule", "tags": ["Calculus", "algebraic manipulation", "calculus", "derivatives", "deriving a quotient", "differentiate a quotient", "differentiation", "dividing linear polynomials"], "advice": "
a)
\nWe have $\\displaystyle \\simplify[std]{{a}x+{b}={a}/{c}*({c}x+{d})+{b}-{a}*{d}/{c}={a}/{c}*({c}x+{d})+{-det}/{c}}$
Hence \\[\\begin{eqnarray*} \\simplify[std]{({a} * x+{b})/({c}x+{d})}&=&\\simplify[std]{({a}/{c}*({c}x+{d})+{-det}/{c})/({c}x+{d})}\\\\ &=&\\simplify[std]{{a}/{c}+({-det}/{c})/({c}x+{d})} \\end{eqnarray*}\\]
Where we have divided out by $\\simplify[std]{{c}x+{d}}$ at the last step.
b)
\nWe have \\[\\frac{dg}{dx} = \\simplify[std]{{-c}/({c}x+{d})^2}\\]
using standard rules of differentiation.
Since from a), \\[f(x) = \\simplify[std]{{a}/{c}+({-det}/{c})/({c}x+{d})}\\]
we see that
\\[\\begin{eqnarray*}\\frac{df}{dx} &=&\\simplify[std,fractionNumbers,!unitPower,!zeroFactor,!zeroTerm,!zeroPower]{(-{c})*(({-det}/{c})/({c}x+{d})^2)}\\\\ &=&\\simplify[std]{{det}/({c}x+{d})^2} \\end{eqnarray*}\\]
Find numbers $a$ and $b$ such that
\\[\\simplify[std]{f(x) = a + b/({c}x+{d})}\\]
Enter a and b as integers or fractions, but not as decimals.
$a=\\;$[[0]]
\n$b=\\;$[[1]]
\nYou can click on Show steps to get some help, but you will lose 1 mark if you do so.
\n ", "gaps": [{"notallowed": {"message": "Input numbers as fractions or integers and not as decimals.
", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{a}/{c}", "type": "jme"}, {"notallowed": {"message": "Input numbers as fractions or integers and not as decimals.
", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{-det}/{c}", "type": "jme"}], "steps": [{"prompt": "$\\simplify[std]{{a}x+{b}=a*({c}x+{d})+b}$ for suitable numbers $a$ and $b$.
", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}, {"prompt": "\nDifferentiate
\\[\\simplify[std]{g(x) = 1/({c}x+{d})}\\]
$\\displaystyle \\frac{dg}{dx}=\\;$[[0]]
\nHence using the first part of the question differentiate \\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x+{d})}\\]
\n$\\displaystyle \\frac{df}{dx}=\\;$[[1]]
\nInput numbers as fractions or integers and not as decimals.
\n ", "gaps": [{"notallowed": {"message": "Input numbers as fractions or integers and not as decimals.
", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [10.0, 11.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{-c}/({c}x+{d})^2", "type": "jme"}, {"notallowed": {"message": "Input numbers as fractions or integers and not as decimals.
", "showstrings": false, "strings": ["."], "partialcredit": 0.0}, "checkingaccuracy": 0.001, "vsetrange": [10.0, 11.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 1.0, "answer": "{det}/({c}x+{d})^2", "type": "jme"}], "type": "gapfill", "marks": 0.0}], "extensions": [], "statement": "Let \\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x+{d})}\\]
", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "c": {"definition": "if(a*d=b*c1,c1+1,c1)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "d": {"definition": "s2*random(1..9)", "name": "d"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "s1": {"definition": "random(1,-1)", "name": "s1"}, "det": {"definition": "a*d-b*c", "name": "det"}, "c1": {"definition": "random(2..8)", "name": "c1"}}, "metadata": {"notes": "\n \t\t1/08/2012:
\n \t\tAdded tags.
\n \t\tChecked calculation. OK.
\n \t\tAdded description.
\n \t\tAll round improvement in display.
\n \t\tAdded forbidden instructions on using decimals.
\n \t\tAdded information on losing 1 mark if use Show steps in part a).
\n \t\t", "description": "Other method. Find $p,\\;q$ such that $\\displaystyle \\frac{ax+b}{cx+d}= p+ \\frac{q}{cx+d}$. Find the derivative of $\\displaystyle \\frac{ax+b}{cx+d}$.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}