// Numbas version: finer_feedback_settings {"name": "Patricia's copy of present value - ordinary annuity", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "functions": {}, "statement": "

If you are unsure of how to do a question, click on Reveal answers to see the full working. Then, once you understand how to do the question, click on Try another question like this one to start again. Do each question repeatedly to ensure you have mastered it.

", "extensions": [], "tags": [], "rulesets": {}, "parts": [{"scripts": {}, "prompt": "

Suppose you are given $\\$\\var{C}$ at the end of each {period[2]} for $\\var{years}$ years. If the interest rate is $\\var{ipa}\\%$ per annum compounding {period[0]}, what is this cash flow worth at the beginning of the $\\var{years}$ years?

\n

\n

$\\$$ [[0]] (to the nearest cent)

", "gaps": [{"scripts": {}, "useCustomName": false, "mustBeReducedPC": 0, "customMarkingAlgorithm": "", "unitTests": [], "precisionMessage": "You have not given your answer to the nearest cent.", "precision": "2", "correctAnswerStyle": "plain", "customName": "", "minValue": "P", "showCorrectAnswer": true, "precisionType": "dp", "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "showPrecisionHint": false, "showFeedbackIcon": true, "mustBeReduced": false, "strictPrecision": true, "notationStyles": ["plain", "en", "si-en"], "marks": 1, "precisionPartialCredit": 0, "type": "numberentry", "correctAnswerFraction": false, "maxValue": "P", "variableReplacementStrategy": "originalfirst", "allowFractions": false}], "unitTests": [], "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "type": "gapfill", "marks": 0, "useCustomName": false, "showCorrectAnswer": true, "customName": "", "sortAnswers": false, "variableReplacementStrategy": "originalfirst"}], "variables": {"n": {"group": "Ungrouped variables", "definition": "years*period[1]", "name": "n", "description": "", "templateType": "anything"}, "period": {"group": "Ungrouped variables", "definition": "random([random('yearly','annually'),1,'year'],[random('half-yearly','semiannually'),2,'half-year'],['quarterly', 4, 'quarter'],['monthly',12,'month'],['daily', 365,'day'])", "name": "period", "description": "", "templateType": "anything"}, "ipa": {"group": "Ungrouped variables", "definition": "ipadec*100", "name": "ipa", "description": "", "templateType": "anything"}, "ipadec": {"group": "Ungrouped variables", "definition": "random(0.02..0.10#0.001)", "name": "ipadec", "description": "", "templateType": "anything"}, "years": {"group": "Ungrouped variables", "definition": "random(3..20)", "name": "years", "description": "", "templateType": "anything"}, "C": {"group": "Ungrouped variables", "definition": "if(period[1]=365,random(1..10),random(20..300#10))", "name": "C", "description": "", "templateType": "anything"}, "Prounded": {"group": "Ungrouped variables", "definition": "precround(P,2)", "name": "Prounded", "description": "", "templateType": "anything"}, "P": {"group": "Ungrouped variables", "definition": "(C*period[1]/ipadec)*(1-(1+ipadec/period[1])^(-n))", "name": "P", "description": "", "templateType": "anything"}}, "preamble": {"js": "", "css": ""}, "name": "Patricia's copy of present value - ordinary annuity", "ungrouped_variables": ["years", "period", "ipadec", "ipa", "C", "n", "P", "Prounded"], "metadata": {"description": "Financial maths. Present value of an ordinary annuity.", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

You are asked to find the present value of an ordinary annuity (since the payments are at the end of each period). Therefore we will use the present value of an ordinary annuity formula

\n

$\\displaystyle P=\\frac{C}{i}\\left(1-\\frac{1}{(1+i)^n}\\right)$

\n

where $P$ is the present value, $C$ is the cash flow per period, $i$ is the interest rate per period, and $n$ is the number of periods.

\n

In our situation we have,

\n

$C=\\var{C}$,

\n

$i=\\frac{\\var{ipa}\\%}{\\var{period[1]}}=\\frac{\\var{ipadec}}{\\var{period[1]}}$, $i=\\var{ipa}\\%=\\var{ipadec}$,

\n

$n=\\var{years}\\times \\var{period[1]}=\\var{n}$, $n=\\var{n}$,

\n

and therefore we have

\n

$\\displaystyle P=\\frac{\\var{C}}{\\left(\\simplify[unitDenominator]{{ipadec}/{period[1]}}\\right)}\\left(1-\\frac{1}{\\left(1+\\simplify[unitDenominator]{{ipadec}/{period[1]}}\\right)^\\var{n}}\\right)$

\n

Calculating this we find 

\n

$\\begin{align}P&\\approx \\var{P}\\\\&=\\$\\var{Prounded}\\quad \\text{(to the nearest cent)}\\end{align}$

", "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Patricia Cogan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3359/"}]}