// Numbas version: exam_results_page_options {"name": "Mat 2C - Bab 13 - No 5", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Mat 2C - Bab 13 - No 5", "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

Daerah \$$R \$$ yang dibatasi oleh lintasan tertutup \$$C \$$ akan mempunyai luas \$$A(R)=\\dfrac{1}{2}\\displaystyle\\oint_C (-y\\,dx+x\\,dy). \$$

", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1,2,3,4,5)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1,2,3,4,5)", "description": "", "templateType": "anything", "can_override": false}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "random(2,4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "r"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Jika \$$C_1\$$ menyatakan garis yang menghubungkan titik \$$(\\var{a},0) \$$ ke titik \$$({\\var{a+r}},\\var{b}) \$$, maka \$$\\dfrac{1}{2}\\displaystyle\\int_{C_1} (-y\\,dx+x\\,dy) =\$$ [[0]].

\n

Jika \$$C_2\$$ menyatakan garis yang menghubungkan titik \$$({\\var{a+r}},\\var{b}) \$$ ke titik \$$(\\var{a},{\\var{a+r}}) \$$, maka \$$\\dfrac{1}{2}\\displaystyle\\int_{C_2} (-y\\,dx+x\\,dy) =\$$ [[1]].

\n

Jika \$$C_3\$$ menyatakan garis yang menghubungkan titik \$$(\\var{a},{\\var{a+r}}) \$$ ke titik  \$$(\\var{a},0) \$$, maka \$$\\dfrac{1}{2}\\displaystyle\\int_{C_3} (-y\\,dx+x\\,dy) =\$$ [[2]].

\n

\n

Maka luas segitiga dengan titik sudut \$$(\\var{a},0) \$$, \$$({\\var{a+r}},\\var{b}) \$$, dan \$$(\\var{a},{\\var{a+r}}) \$$ adalah [[3]].

Luas segilima dengan titik sudut \$$(\\var{a},0) \$$, \$$({\\var{a+r}},\\var{b}) \$$, \$$(\\var{a},{\\var{a+r}}) \$$, \$$(0,\\var{r+1}) \$$, dan \$$(0,\\var{r}) \$$ adalah \$$\\ldots\$$.