// Numbas version: finer_feedback_settings {"name": "Probability: Independent Events - requires 'given that'", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Probability: Independent Events - requires 'given that'", "tags": [], "metadata": {"description": "

Independent events in probability. Choose whether given three given pairs of events are independent or not.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Choose whether the following three pairs of events are independent or not.

", "advice": "

There are two ways to understand independent events, either by thinking about the context of the events, or by examining the mathematical properties.

\n

If two events are independent we understand that information about one event does not affect our understanding of the likelihood of the other event.
e.g. 'it is raining', 'I carry an umberella' are NOT independent, they are dependent.

\n

To translate this thought into a mathematical statement:

\n

If A and B are independent events then $P(A \\vert B) = P(A)$.
Since we know (by definition) that $P(A \\vert B) = \\frac{P(A \\cap B)}{P(B)}$, we have that, for independent events,

\n

$P(A) = P(A \\vert B) = \\frac{P(A \\cap B)}{P(B)}$

\n

$\\implies  P(A) = \\frac{P(A \\cap B)}{P(B)}$

\n

$\\implies P(A \\cap B) = P(A) \\times P(B) $

\n

This equality only holds for independent events, and can be used to check if events are independent or not.

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(0.1..0.9 #0.1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(0.1..0.9 #0.1 except a)", "description": "", "templateType": "anything", "can_override": false}, "anb": {"name": "anb", "group": "Ungrouped variables", "definition": "if(ind[0]=1,a*b,random(0.1..max(a,b) #0.1 except a*b))", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(0.1..0.9 #0.1)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(0.1..0.9 #0.1 except c)", "description": "", "templateType": "anything", "can_override": false}, "cnd": {"name": "cnd", "group": "Ungrouped variables", "definition": "if(ind[1]=1,c*d,random(0.1..max(c,d) #0.1 except c*d))", "description": "", "templateType": "anything", "can_override": false}, "egivf": {"name": "egivf", "group": "Ungrouped variables", "definition": "if(ind[2]=1,ee,random(ee..0.9 #0.1 except ee))", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(0.1..0.9 #0.1)", "description": "", "templateType": "anything", "can_override": false}, "ind": {"name": "ind", "group": "Ungrouped variables", "definition": "repeat(random(1,0),3)", "description": "", "templateType": "anything", "can_override": false}, "ee": {"name": "ee", "group": "Ungrouped variables", "definition": "random(0.1..0.8 #0.1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["ind", "a", "b", "anb", "c", "d", "cnd", "ee", "f", "egivf"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given that:

\n

$P(A) = \\var{a}, P(B) = \\var{b}$ and $P(A \\cap B) = \\var{anb}$

\n

\n

$P(C) = \\var{c}, P(D) = \\var{d}$ and $P(C \\cap D) = \\var{cnd}$

\n

\n

$P(E) = \\var{ee}, P(F) = \\var{f}$ and $P(E \\vert F) = \\var{egivf}$


Which pairs of events are independent?

", "minMarks": 0, "maxMarks": "3", "minAnswers": "3", "maxAnswers": "3", "shuffleChoices": false, "shuffleAnswers": false, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["$A$ and $B$", "$C$ and $D$", "$E$ and $F$"], "matrix": [["if(ind[0]=0,0,1)", "if(ind[0]=1,0,1)"], ["if(ind[1]=0,0,1)", "if(ind[1]=1,0,1)"], ["if(ind[2]=0,0,1)", "if(ind[2]=1,0,1)"]], "layout": {"type": "all", "expression": ""}, "answers": ["Independent", "Dependent"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "resources": []}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}