// Numbas version: finer_feedback_settings {"name": "Probability: Continuous Random Variable", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Probability: Continuous Random Variable", "tags": [], "metadata": {"description": "

Set up and solve an equation = 1, to ensure a function is a CRV

", "licence": "None specified"}, "statement": "

A continuous random variable $\\var{X}$ is given by:

\n

\\[ f_\\var{X}(\\var{little}) = \\begin{cases} \\begin{split} & \\var{coeff}k\\var{little}^\\var{power} \\quad   &\\text{for} \\quad   0 \\le \\var{little} \\le 1 \\\\
&0   \\quad &\\text{otherwise} \\end{split} \\end{cases}\\]

", "advice": "

part a)

\n

A probability distribution is a function that defines the probability of each possible outcome.  Since the sum of probabilities of all outcomes must be 1, we can use this fact to calculate $k$.  We also need to remember that an integral is a sum over a continuous range:

\n

\\[ \\int_{-\\infty}^{\\infty} f_\\var{X}(\\var{little}) d\\var{little} = 1 \\]

\n

\n

Substituting in our function and replacing the limits with $0$ and $1$, since we know the function is zero anywhere out of that range:

\n

\n

\\[ \\begin{split} \\int_{0}^{1} \\var{coeff}k \\var{little}^\\var{power} d\\var{little} &\\,= 1 \\\\ \\left[ \\frac{\\var{coeff}k \\var{little}^\\var{power+1}}{\\var{power+1}} \\right] _{ 0}^{ 1} &\\,= 1 \\\\ \\left( \\frac{\\var{coeff}k \\times 1^\\var{power+1}}{\\var{power+1}} \\right) - (0) &\\,= 1 \\\\ \\frac{\\var{coeff}k}{\\var{power+1}} &\\,= 1\\\\ k &\\,= \\var[fractionnumbers]{k} \\end{split}  \\]

\n

part b)

\n

The formula for Expectation is:

\n

\\[ E(X) = \\int_{-\\infty}^{\\infty} x f(x) dx \\]

\n

If this looks like an odd formula, it can be helpful to think about how expectation is calculated in the discrete case.

Let's use the formula:

\n

\\[ E(\\var{x}) = \\int_{0}^{1} \\var{little} \\times \\var[fractionnumbers]{k} \\times \\var{coeff} \\var{little}^\\var{power} d\\var{little} \\]

\n

\\[= \\int_{0}^{1}  \\var[fractionnumbers]{coeff*k} \\var{little}^\\var{power+1} d\\var{little} \\]

\n

\\[ = \\left[ \\frac{\\var[fractionnumbers]{coeff*k} \\var{little}^\\var{power+2}}{\\var{power+2}} \\right] _{ 0}^{ 1} \\]

\n

\\[ = \\var[fractionnumbers]{ex} \\]

\n

part c)

\n

The formula for Variance is:

\n

\\[Var(\\var{X}) = E(\\var{X}^2) - E(\\var{X})^2\\]

\n

We have already calculated $E(\\var{X})$, so let us calculate $E(\\var{X}^2)$ first.

\n

\\[ E(\\var{x}^2) = \\int_{0}^{1} \\var{little}^2 \\times \\var[fractionnumbers]{k} \\times \\var{coeff} \\var{little}^\\var{power} d\\var{little} \\]

\n

\\[= \\int_{0}^{1}  \\var[fractionnumbers]{coeff*k} \\var{little}^\\var{power+2} d\\var{little} \\]

\n

\\[ = \\left[ \\frac{\\var[fractionnumbers]{coeff*k} \\var{little}^\\var{power+3}}{\\var{power+3}} \\right] _{ 0}^{ 1} \\]

\n

\\[ = \\var[fractionnumbers]{ex2} \\]

\n

so therefore

\n

\\[ Var(\\var{x}) = \\var[fractionnumbers]{ex2} - \\big(\\var[fractionnumbers]{(ex)} \\big) ^2  = \\var[fractionnumbers]{vx} \\]

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"X": {"name": "X", "group": "Ungrouped variables", "definition": "expression(random('X','Y'))", "description": "", "templateType": "anything", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "(power+1)/(coeff)", "description": "", "templateType": "anything", "can_override": false}, "little": {"name": "little", "group": "Ungrouped variables", "definition": "expression(random('u','v'))", "description": "", "templateType": "anything", "can_override": false}, "coeff": {"name": "coeff", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "power": {"name": "power", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "ex": {"name": "ex", "group": "Ungrouped variables", "definition": "coeff*k/(power+2)", "description": "", "templateType": "anything", "can_override": false}, "vx": {"name": "vx", "group": "Ungrouped variables", "definition": "coeff*k/(power+3) - (ex)^2", "description": "", "templateType": "anything", "can_override": false}, "ex2": {"name": "ex2", "group": "Ungrouped variables", "definition": "coeff*k/(power+3)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["X", "k", "little", "coeff", "power", "ex", "vx", "ex2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What value of $k$ makes this a probability distribution function.

Give your answer as a fraction, or a decimal correct to 2dp.

", "alternatives": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "minValue": "precround(k,2)", "maxValue": "precround(k,2)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": "100", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "minValue": "k", "maxValue": "k", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the value of $E(\\var{x})$

Give your answer as a fraction, or a decimal correct to 2dp.

", "alternatives": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "minValue": "precround(ex,2)", "maxValue": "precround(ex,2)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": "100", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "minValue": "ex", "maxValue": "ex", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate Var$(\\var{X})$

Give your answer as a fraction, or a decimal correct to 2dp.

", "alternatives": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "minValue": "precround(vx,2)", "maxValue": "precround(vx,2)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": "100", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "minValue": "vx", "maxValue": "vx", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}], "resources": []}]}], "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}