// Numbas version: finer_feedback_settings {"name": "Beam Bending", "extensions": [], "custom_part_types": [], "resources": [["question-resources/LoadedBeam.png", "/srv/numbas/media/question-resources/LoadedBeam.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Beam Bending", "tags": [], "metadata": {"description": "

Euler-Bernoulli simply supported beam bending example with point force and moment.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

A beam is simply supported at two points from below, and loaded from above with force $F$. A moment $M$ is applied also. The beam is in static equilibrium, has constant cross-section with second moment $I$ and uniform material properties with Young's elastic modulus $E$. It can be treated like an Euler-Bernoulli beam with bending equation:

\n

$-{\\sigma_x \\over y} = {m(x) \\over I} = {E \\over R(x)} = E v''(x)$

\n

where $m(x)$ is the bending moment, $R(x)$ is the bend radius and $v''(x) = 1/R(x)$ is the corresponding curvature; the coordinate $x$ is zero at the left end of the beam.

\n

\n

The equation of force per unit length can be written for this case using the Dirac delta function, $\\delta(x)$:

\n

$f(x) = R_L \\delta(x-L_1) - F \\delta(x-(L_1+L_2)) + R_R \\delta(x-(L_1+L_2 + L_3 + L_4))$

\n

where we are ignoring the applied moment for now. This can be integrated to get the shear force function:

\n

$V(x) = R_L \\langle x-L_1 \\rangle^0 - F \\langle x-(L_1+L_2)\\rangle^0 + R_R \\langle x-(L_1+L_2 + L_3 + L_4)\\rangle^0$

\n

where $\\langle x - a \\rangle^0$ is a step-function that steps up from zero to one at $x=a$. In general, these Macauley brackets are defined as:

\n

$\\langle x - a \\rangle^n = \\left\\{ \\begin{array}{ll} (x-a)^n & x > a\\\\ 0 & x < a\\end{array} \\right.$

\n

In these equations, positive forces are upwards, and positive moments are anticlockwise. When integrating to get the bending moment function, we need to subtract any applied moments as we pass them. In this case, $M$ is clockwise, so is technically already negative and ends up getting added:

\n

$m(x) = R_L \\langle x-L_1 \\rangle^1 - F \\langle x-(L_1+L_2)\\rangle^1 + R_R \\langle x-(L_1+L_2 + L_3 + L_4)\\rangle^1 + M \\langle x-(L_1+L_2 + L_3)\\rangle^0$

\n

Note: The maximum bending moment (of either sign) will be either where the force is applied or immediately one side or the other of the applied moment.

\n

Using the bending equation, this can be integrated to give us the deflection gradient of the beam, $v'(x)$:

\n

$EIv'(x) = {1 \\over 2} R_L \\langle x-L_1 \\rangle^2 -{1 \\over 2} F \\langle x-(L_1+L_2)\\rangle^2 +{1 \\over 2} R_R \\langle x-(L_1+L_2 + L_3 + L_4)\\rangle^2 + M \\langle x-(L_1+L_2 + L_3)\\rangle^1 + A$

\n

where $A$ is a constant of integration. A final integration step gives the vertical deflection of the beam, $v(x)$:

\n

$EIv(x) = {1 \\over 6} R_L \\langle x-L_1 \\rangle^3 -{1 \\over 6} F \\langle x-(L_1+L_2)\\rangle^3 +{1 \\over 6} R_R \\langle x-(L_1+L_2 + L_3 + L_4)\\rangle^3 + {1 \\over 2} M \\langle x-(L_1+L_2 + L_3)\\rangle^2 + Ax + B$

\n

where $B$ is a constant of integration. The constants of integration are determined by the requirement that the vertical deflection is zero at the supports, i.e., $v(L_1) = 0$ and $v(L_1+L_2+L_3+L_4) = 0$. The first of these is trivial because the Macauley brackets all disappear for the first part of the beam:

\n

$0 = EIv(L_1) = A L_1 + B$

\n

i.e., $B = -A L_1$, so there is only one constant still to be fixed. At the other support, none of the Macauley brackets disappear, although one of them is technically zero:

\n

$\\begin{array}{rcl}0 = EIv(L_1+L_2+L_3+L_4) &=& {1 \\over 6} R_L \\langle L_1+L_2+L_3+L_4-L_1 \\rangle^3 -{1 \\over 6} F \\langle L_1+L_2+L_3+L_4-(L_1+L_2)\\rangle^3 + \\\\ &&{1 \\over 6} R_R \\langle L_1+L_2+L_3+L_4-(L_1+L_2 + L_3 + L_4)\\rangle^3 + \\\\ && {1 \\over 2} M \\langle L_1+L_2+L_3+L_4-(L_1+L_2 + L_3)\\rangle^2 + Ax + B \\\\ &=& {1 \\over 6} R_L ( L_2+L_3+L_4 )^3 -{1 \\over 6} F ( L_3+L_4)^3 +{1 \\over 6} R_R ( 0 )^3 + {1 \\over 2} M ( L_4 )^2 + A(L_2+L_3+L_4)\\end{array}$

\n

where you can see that $L_1$ and $R_R$ have vanished from the expression, and the constant $A$ is given by:

\n

$A(L_2+L_3+L_4) = -{1 \\over 6} R_L ( L_2+L_3+L_4 )^3 +{1 \\over 6} F ( L_3+L_4)^3 - {1 \\over 2} M ( L_4 )^2$

", "advice": "

(See method in problem statement above.)

", "rulesets": {}, "extensions": [], "variables": {"L1": {"name": "L1", "group": "Ungrouped variables", "definition": "random(2..6)*10", "description": "

Length L1 [cm].

", "templateType": "anything"}, "L2": {"name": "L2", "group": "Ungrouped variables", "definition": "random(1..5)*10", "description": "

Length L2 [cm].

", "templateType": "anything"}, "L3": {"name": "L3", "group": "Ungrouped variables", "definition": "random(1..4)*10", "description": "

Length L3 [cm].

", "templateType": "anything"}, "L4": {"name": "L4", "group": "Ungrouped variables", "definition": "100-(L2+L3)", "description": "

Length L4 [cm].

", "templateType": "anything"}, "L5": {"name": "L5", "group": "Ungrouped variables", "definition": "random(2..6)*10", "description": "

Length L5 [cm].

", "templateType": "anything"}, "F": {"name": "F", "group": "Ungrouped variables", "definition": "random(1..9)*100", "description": "

Applied (downwards) force F [N].

", "templateType": "anything"}, "M": {"name": "M", "group": "Ungrouped variables", "definition": "(F*(L3+L4)/100)*random(1..9)/10", "description": "

Applied (clockwise) moment M [Nm].

", "templateType": "anything"}, "RR": {"name": "RR", "group": "Ungrouped variables", "definition": "(F*L2/100+M)", "description": "

(Upwards) Reaction at right support [N].

", "templateType": "anything"}, "RL": {"name": "RL", "group": "Ungrouped variables", "definition": "F-RR", "description": "

(Upwards) Reaction at left support [N].

", "templateType": "anything"}, "width": {"name": "width", "group": "Ungrouped variables", "definition": "random(10..20)", "description": "

Beam width [cm].

", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(15..25)", "description": "

Beam thickness [mm].

", "templateType": "anything"}, "YEM": {"name": "YEM", "group": "Ungrouped variables", "definition": "random(70,104,130,209)", "description": "

Young's elastic modulus [GPa].

", "templateType": "anything"}, "I2": {"name": "I2", "group": "Ungrouped variables", "definition": "width*(d/10)^3/12", "description": "

Second moment of area [cm4].

", "templateType": "anything"}, "I2_3sf": {"name": "I2_3sf", "group": "Ungrouped variables", "definition": "siground(I2,3)", "description": "

Second moment of area [cm4] (3 s.f.).

", "templateType": "anything"}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "(F*((L3+L4)/100)^3/6 - RL*((L2+L3+L4)/100)^3/6 - M*(L4/100)^2/2)/((L2+L3+L4)/100)", "description": "

Constant of integration in gradient equation.

", "templateType": "anything"}, "A_3sf": {"name": "A_3sf", "group": "Ungrouped variables", "definition": "siground(A,3)", "description": "

Constant (3 s.f.).

", "templateType": "anything"}, "B": {"name": "B", "group": "Ungrouped variables", "definition": "-A*L1/100", "description": "

Constant of integration in displacement equation [m].

", "templateType": "anything"}, "B_3sf": {"name": "B_3sf", "group": "Ungrouped variables", "definition": "siground(B,3)", "description": "

Constant of integration in displacement [m] (3 s.f.).

", "templateType": "anything"}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "(L1+L2+L3+L4+L5)/100", "description": "

x

", "templateType": "anything"}, "v": {"name": "v", "group": "Ungrouped variables", "definition": "(RL*Macauley(x,L1/100,3)/6-F*Macauley(x,(L1+L2)/100,3)/6+RR*Macauley(x,(L1+L2+L3+L4)/100,3)/6+M*Macauley(x,(L1+L2+L3)/100,2)/2+A*x+B)*1000/(10*YEM*I2)", "description": "

Vertical displacement of beam [mm].

", "templateType": "anything"}, "v_3sf": {"name": "v_3sf", "group": "Ungrouped variables", "definition": "siground(v,3)", "description": "

Displacement of beam [mm] (3 s.f.).

", "templateType": "anything"}, "Mmax": {"name": "Mmax", "group": "Ungrouped variables", "definition": "max([RL*L2/100,RR*L4/100,abs(RR*L4/100 - M)])", "description": "

Maximum (absolute) bending moment, i.e., ignoring the sign [Nm].

", "templateType": "anything"}, "Mmax_3sf": {"name": "Mmax_3sf", "group": "Ungrouped variables", "definition": "siground(Mmax,3)", "description": "

Maximum (absolute) bending moment, i.e., ignoring the sign [Nm] (3 s.f.).

", "templateType": "anything"}, "stress": {"name": "stress", "group": "Ungrouped variables", "definition": "siground((d/2000)*Mmax/(I2/10^2),3)", "description": "

Maximum (absolute) axial stress [MPa] (3 s.f.).

", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["L1", "L2", "L3", "L4", "L5", "F", "M", "RR", "RL", "width", "d", "YEM", "I2", "I2_3sf", "A", "A_3sf", "B", "B_3sf", "x", "v", "v_3sf", "Mmax", "Mmax_3sf", "stress"], "variable_groups": [], "functions": {"Macauley": {"parameters": [["x", "number"], ["a", "number"], ["n", "number"]], "type": "number", "language": "javascript", "definition": "var ans = 0;\nif (x > a) {\n ans = Math.pow((x - a),n);\n}\nreturn ans;"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Beam displacement & max bending moment", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The beam shown above has a solid rectangular section with width {width}cm and thickness {d}mm. The material is uniform with Young's elastic modulus {YEM}GPa. The applied (downwards) force is {F}N and the applied moment is {M}Nm.

\n

The dimensions shown in the illustration are: $L_1$={L1}cm, $L_2$={L2}cm, $L_3$={L3}cm, $L_4$={L4}cm and $L_5$={L5}cm.

\n

Determine:

\n\n

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "RL", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "RL", "maxValue": "RL", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "RR", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "RR", "maxValue": "RR", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "I2", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "I2_3sf", "maxValue": "I2_3sf", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "A", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "A_3sf", "maxValue": "A_3sf", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "B", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "B_3sf", "maxValue": "B_3sf", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "v", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "v_3sf", "maxValue": "v_3sf", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "Mmax", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "Mmax_3sf", "maxValue": "Mmax_3sf", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "stress", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "stress", "maxValue": "stress", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Francis Franklin", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1887/"}]}]}], "contributors": [{"name": "Francis Franklin", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1887/"}]}