// Numbas version: exam_results_page_options {"name": "Transit map for saddle point", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Transit map for saddle point", "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "

Consider the system \\[ \\dot{x}=\\lambda_1 x\\\\ \\dot{y}=\\lambda_2y ,\\] where $\\lambda_1 < 0 < \\lambda_2$ and $D:=\\lambda_1+\\lambda_2 < 0$.

", "advice": "

The solution is given in the part \"solution\".

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": true, "customName": "questions", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "Hint to 1.", "rawLabel": "", "otherPart": 1, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}, {"label": "Hint to 2 and 3", "rawLabel": "", "otherPart": 2, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}, {"label": "Solution", "rawLabel": "", "otherPart": 3, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The flow naturally defines a mapping from the half line $L_1 = \\{(1,y):y>0\\}$, to the half line $L_2=\\{(x,1):x>0\\}$. Indeed given a point $(0,\\eta) \\in L_1$ the orbit through $(1,\\eta)$ intersects $L_2$ in one and only one point $(\\xi(\\eta), 1) \\in L_2$. In this way define a mapping $\\xi : \\mathbb{R_+}\\to \\mathbb{R_+}$.

\n
    \n
  1. Find an expression for $\\xi(\\eta)$.
  2. \n
  3. Show you can extend $\\xi$ continuously to $0$ by letting $\\xi(0)=0$.
  4. \n
  5. Show that the derivative satisfies $\\xi'(0)=0$.
  6. \n
"}, {"type": "information", "useCustomName": true, "customName": "Hint to 1.", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "questions", "rawLabel": "", "otherPart": 0, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

There are several ways to proceed, here's one.

\n

You can assume that for a solution in the first quadrant you can write $y$ as a function of $x$ (this follows since in this case $x(t)$ is injective). By the chain rule
\\[y'(x)=\\frac{\\dot{y}}{\\dot{x}}.\\]
This should give you solutions depending on an arbitrary constant we could call $c$.

\n

The solution we are interested in, is the one where $y=\\eta>0$ when $x=1$. Use this to determine $c$.

\n

Knowing $c$, you can find $\\xi=\\xi(\\eta)$ such that $y(\\xi)=1$.

"}, {"type": "information", "useCustomName": true, "customName": "Hint to 2 and 3", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "questions", "rawLabel": "", "otherPart": 0, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

In the first part you should've shown that  $\\xi(\\eta)=\\eta^a$, with $a = -\\frac{\\lambda_1}{\\lambda_2}$.

\n

Show that $a > 0$, this should give you 2.

\n

Show that $a > 1$ (since $D = \\lambda_1 + \\lambda_2 <0$), this should give you 3.

"}, {"type": "information", "useCustomName": true, "customName": "Solution", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Since for a solution in the first quadrant $\\dot{x}<0$, $x(t)$ is an injective mapping, so a solution curve can be written $(x,y(x))$.

\n

Using the chain rule
\\[ y'(x)=\\frac{\\dot{y}}{\\dot{x}} = \\frac{\\lambda_2}{\\lambda_1} \\frac{y}{x}=-\\frac{1}{a}\\frac{y}{x} ,\\]
where we have set $a = -\\lambda_1 / \\lambda_2$.

\n

Since $\\lambda_1 < 0 < \\lambda_2$, we have $a > 0$. Since $\\lambda+\\lambda_2 < 0$ we have $-\\lambda_1 > \\lambda_2$, so $a > 1$.

\n

Separating the variables, we find that $y(x)= c x^{-1/a}$, where $c$ is a constant.

\n

We look at the particular solution that satisfies $y(1)=\\eta$. This corresponds to $c=\\eta$, so the particular solution is $y(x)=\\eta x^{-1/a}$.

\n

When does the solution curve cross $L_2$? It does so when $(y(x), x) = (1, \\xi)$ for some $\\xi>0$. So we look at the equation $y(x) = 1$: \\[\\eta x^{-1/a} = 1 \\Rightarrow x=\\eta^a .\\]

\n

This means that the function we are looking for is $\\xi(\\eta)=\\eta^a$.

\n

Since $a > 0$, we have $\\xi(\\eta) \\to 0$ when $\\eta \\to 0$. This shows 2.

\n

We also have $\\xi'(\\eta) = a \\eta^{a-1} $, and since $a>1$ this is equal to zero when $\\eta = 0$. This shows 3.

\n

End of exercise.

"}], "partsMode": "explore", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Christian Henriksen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/664/"}]}]}], "contributors": [{"name": "Christian Henriksen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/664/"}]}