// Numbas version: exam_results_page_options {"name": "Mappings and fixed points in 1D", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Mappings and fixed points in 1D", "tags": [], "metadata": {"description": "", "licence": "All rights reserved"}, "statement": "

Let $f:\\mathbb{R}\\to \\mathbb{R}$ be a mapping. This exercise explores how we can consider $f$ a dynamical system.

", "advice": "

The exercise should be somewhat self-explanatory. Ask me if you are in doubt.

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "a) dynamics", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "linear case", "rawLabel": "", "otherPart": 1, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Define the n'th iterate of f by
\\[ f^{\\circ n}(x)= \\begin{cases} x & \\text{when } n = 0 ; \\\\ f(f^{\\circ (n-1)}(x)) & \\text{when } n =1,2,3,\\ldots \\end{cases} \\]

\n

When $f$ is invertible, when can also define $f^{\\circ n}$ for $n = -1, -2, \\ldots$, by letting $f^{\\circ -k}$ denote the $k$'th iterate of the inverse map, when $k \\in \\mathbb{N}$.

\n

We can think of $f$ as defining a flow, by letting $\\phi_n(x)=f^{\\circ n}(x)$. Notice, that in this setting \"time\" n is discrete, $n \\in \\mathbb{N}$ (or $n \\in \\mathbb{Z}$ in the invertible case).

\n

Given $x_0$, we can let $x_1 = f(x_0)$, $x_2 = f(x_1)$, ... Then $x_n = f^{\\circ n}(x_0)$. The points $z_0, z_1, z_2, \\ldots,$ form what is called the forward orbit of $z_0$.

\n

A point $x^*$ where $f(x^*) = x^*$ is called a fixed point.

\n

How many fixed points do the mapping $x \\mapsto x^3$ have: [[0]].

\n

Let the diagonal in $\\mathbb{R}^2$ be the points $\\{(x,x):x\\in\\mathbb{R}\\}$. Consider the following statement:

\n

The fixed points of f are the values of x where the graph of f intersects the diagonal.

\n

Is this statement true? [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "noofFP", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": "fixedpts", "minValue": "3", "maxValue": "3", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "1_n_2", "useCustomName": true, "customName": "truefalse", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": "fixedpts", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["True", "False"], "matrix": ["1", 0], "distractors": ["", ""]}], "sortAnswers": false}, {"type": "1_n_2", "useCustomName": true, "customName": "linear case", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "asympstable", "rawLabel": "", "otherPart": 2, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": "condition", "prompt": "

Now consider the simple linear case $f(x) = \\lambda x$, where $\\lambda$ is a constant. Then $x^*=0$ is a fixed point.

\n

Determine a condition that is equivalent (meaning sufficient and necessary) to the following:
For any $x_0 \\in \\mathbb{R}$ it holds that $f^{\\circ n}(x_0) \\to 0$ when $n\\to \\infty$.

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": false, "choices": ["$\\lvert \\lambda \\rvert \\leq 1$", "$\\lvert \\lambda \\rvert < 1$", "$0 \\leq \\lambda \\leq 1$", "$0 \\leq \\lambda < 1$", "$\\lambda = 0$"], "matrix": [0, "1", 0, 0, 0], "distractors": ["", "", "", "", ""]}, {"type": "information", "useCustomName": true, "customName": "asympstable", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "solution", "rawLabel": "", "otherPart": 3, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Suppose $f : \\mathbb{R} \\to \\mathbb{R}$ is differentiable at the point $x^*$, and that $f(x^*)=x^*$.

\n

Let $\\lambda = f'(x^*)$, and suppose $\\lvert \\lambda \\rvert < 1$.

\n

Prove that there exists an interval open $I = (x^*-\\delta, x^*+\\delta)$, so that when $x_0 \\in I$, it holds that $f^{\\circ n}(x_0) \\to x^*$, when $n \\to \\infty$.

\n

Hint: Given any $\\kappa$ with $\\kappa > \\lvert \\lambda \\rvert$, there exists an open interval around $x^*$ where $\\lvert f(x)-f(x^*)\\rvert \\leq \\kappa \\lvert x-x^* \\rvert$.

\n

"}, {"type": "information", "useCustomName": true, "customName": "solution", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [{"label": "conclusion", "rawLabel": "", "otherPart": 4, "variableReplacements": [], "availabilityCondition": "", "penalty": "", "penaltyAmount": 0, "showPenaltyHint": true, "lockAfterLeaving": false}], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

We can assume $x^*=0$ with no loss of generality.

\n

Pick $\\kappa$ with $\\lvert \\lambda \\rvert < \\kappa < 1$.

\n

Since $f'(0)=\\lambda$, we know $\\frac{f(x-0)}{x-0}=\\frac{f(x)}{x}\\to \\lambda$ when $x\\to 0$.

\n

It follows that $\\left\\lvert \\frac{f}{x}\\right\\rvert \\to \\lvert \\lambda\\rvert$ when $x\\to 0$. It particular, there exists $\\delta > 0$ such that $\\lvert \\frac{f(x)}{x} \\rvert \\leq \\kappa$ when $0 < \\lvert x \\rvert <\\delta$.

\n

We deduce that $\\lvert f(x) \\rvert \\leq \\kappa \\lvert x\\rvert$, when $x \\in I =(-\\delta, \\delta)$.

\n

By induction, $\\lvert f^{\\circ n}(x) \\rvert \\leq \\kappa^n \\lvert x \\rvert  \\to 0$ when $n \\to \\infty$, for any $x \\in I$.

"}, {"type": "information", "useCustomName": true, "customName": "conclusion", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

We will later talk about asymptotic stability, and basically, what we have just seen, is that $\\lvert f'(x^*) \\rvert < 1$ is a sufficient condition for a fixed point $x^*$ to being asymptotically stable.

\n

End of exercise.

"}], "partsMode": "explore", "maxMarks": "3", "objectives": [{"name": "fixedpts", "limit": "2"}, {"name": "condition", "limit": "1"}], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Christian Henriksen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/664/"}]}]}], "contributors": [{"name": "Christian Henriksen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/664/"}]}